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Quantum measurement processes of discrete and continuous observables are
considered from the information-theoretic point of view. The information
extracted from the results of quantum measurement performed on a physical
system and the change of the Shannon entropy of the measured physical system
are investigated in detail. It is shown that the amount of information about the
intrinsic observable of the measured physical system can be expressed by the
mutual information between the physical system and the measurement apparatus
if the intrinsic observable commutes with the operational observable defined by
the quantum measurement process. Furthermore, the condition can be obtained
under which the amount of information extracted from the measurement outcomes
becomes equal to the decrease of the entropy of the measured physical system.
In addition, the change of the Shannon entropy is compared with that of the von
Neumann entropy. The general results do not depend on whether the readout of
the measurement outcome obeys the projection postulate or not. Several examples
of quantum measurement processes are considered to examine the general results.

1. INTRODUCTION

The entropy of a physical system is one of the most important quantities

in thermodynamics and statistical mechanics (Mayer and Mayer, 1977). For
example, the second law of thermodynamics is formulated in terms of entropy.

In thermal equilibrium, the entropy of a macroscopic system is obtained by

the Boltzmann formula. Let W be the number of microscopic states of the

system that are macroscopically equivalent in thermal equilibrium. Then the

Boltzmann formula tells us that the entropy H of the system is given by

H 5 ln W, where we set the Boltzmann constant kB 5 1. To rewrite the
Boltzmann formula, let pj be the probability that the jth microscopic state
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appears in thermal equilibrium. The principle of equal a priori probabilities

says that all the probabilities are equal, that is, pj 5 1/W for all j (Mayer

and Mayer, 1977). Hence the entropy in thermal equilibrium can be expressed
in the form H 5 2 ( W

j 5 1 pj ln pj. Conversely, when we define the entropy by

this formula, the thermal equilibrium state is obtained by applying the entropy-

maximum principle (Jaynes, 1957a, b).

The relation between entropy and information was considered first by

Szilard (1929), who showed that the information gain by the measurement

of the thermodynamic system decreases the entropy of the measured system.
Of course, the total entropy of the measured system and the measurement

apparatus increases, which is the second law of thermodynamics. The impor-

tance of Szilard’ s work was pointed out by Brillouin (1956), while Szilard’ s

work was criticized by Jauch and BaÂron (1972). The most important and

interesting work to understand the relation between entropy and information

was done by Shannon (1948a, b; Shannon and Weaver, 1949) who introduced
the entropy, called the Shannon entropy, into communications theory. He

showed the source-coding theorem and the channel-coding theorem: The

former says that the average length of a code word representing a symbol

generated from a message source is lower bounded by the Shannon entropy

of the message source; the latter ensures that the information can be reliably
transmitted through a noisy channel if the information rate is less than the

channel capacity, which is the maximum value of the mutual information of

the communication channel. The work by Szilard (1929), Brillouin (1956),

and Shannon (1948a, b; Shannon and Weaver, 1949) treated classical systems.

Other interesting work on the relations among entropy, information, and

randomness of physical systems includes that by Zurek (1989) and Caves
(1993).

Quantum mechanical entropy was introduced by von Neumann in the

quantum theory of measurement (von Neumann, 1955). Let r Ãbe a statistical

operator which describes the quantum state of a physical system. Then the

quantum mechanical entropy S ( r Ã), called the von Neumann entropy, is given

by S ( r Ã) 5 2 Tr[ r Ãln r Ã], where Tr stands for the trace operation over the
Hilbert space on which the statistical operator r Ãis defined. When a physical

system is prepared in the quantum state r Ã, an observable AÃof the physical

system, which has the eigenstate | c (a) & with eigenvalue a, takes the value a
with probability pA(a) 5 ^ c (a) | r Ã| c (a) & . In this case, the Shannon entropy of

the observable AÃis given by H ( pA) 5 2 ( a p(a) ln p(a), which is no less

than the von Neumann entropy S ( r Ã), namely, S ( r Ã) # H( pA), where the
entropy H( pA) is referred to as the measurement entropy in some cases

(Ballan et al., 1986). The properties of the von Neumann entropy in quantum

measurement processes have been investigated by several authors (Groene-

wold, 1971; Lindblad, 1973; Ozawa, 1986).
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It has recently been found that the von Neumann entropy in quantum

information theory (Belavkin et al., 1995; Hirota et al., 1997) plays the same

role as the Shannon entropy does in classical information theory (Cover and
Thomas, 1991). In fact, the two quantum coding theorems have been proven

in terms of the von Neumann entropy (Schumacher, 1995; Jozsa and Schu-

macher, 1994; Schumacher and Westmoreland, 1997; Holevo, 1998). The

quantum source-coding theorem says that the average number of quantum

bits (qubits) representing a pure quantum state generated from a quantum

message source is lower bounded by the von Neumann entropy of the source
(Schumacher, 1995; Jozsa and Schumacher, 1994), and the quantum channel-

coding theorem ensures that the information can be reliably transmitted

through a noisy quantum channel if the information rate is less than the

channel capacity, called the Holevo bound (Holevo, 1973), which is calculated

in terms of the von Neumann entropy (Schumacher and Westmoreland, 1997;

Holevo, 1998). Quantum information theory, which includes quantum com-
puting, quantum coding, and quantum cryptography, is one of the most

important subjects in present-day quantum physics and information science

(Belavkin et al., 1995; Hirota et al., 1997).

When quantum measurement is performed on a physical system, the

quantum state of the measured system inevitably changes due to the effects
of the quantum measurement process. Any quantum measurement process

that does not disturb the quantum state gives us no information about the

measured system. The state change of the measured system induces a change

of the Shannon entropy (or the measurement entropy) of the system. Thus

it is clear that any quantum measurement process in which the entropy of

the system remains unchanged does not give us any information about the
system. Therefore it is important to investigate the relation between the

amount of information about the physical system extracted from the measure-

ment outcomes and the entropy change of the measured physical system.

This is the main subject of this paper. In particular, we would like to obtain

the condition for quantum measurement processes under which the amount

of information extracted from the measurement outcomes is equal to the
decrease of the entropy of the measured physical system. Furthermore, we

consider several models of quantum measurement processes to examine the

general results.

This paper is organized as follows. In Section 2 we briefly review the

basic elements of the quantum theory of measurement in a suitable way for

our purpose, and then we introduce probability distributions in a quantum
measurement process. In Section 3 we consider the information about the

measured physical system that is extracted from measurement outcomes, and

we find the condition under which the amount of information about the

physical system can be expressed by the mutual information between the
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physical system and the measurement apparatus. The condition is equivalent

to the commutativity of the intrinsic observable of the measured system and

the operational observable defined by the quantum measurement process. In
Section 4 we investigate the entropy change of the physical system caused

by the quantum measurement process. We obtain the condition under which

the amount of information extracted from the measurement outcomes becomes

equal to the entropy decrease of the measured physical system. Furthermore,

we compare the change of the Shannon entropy with that of the von Neumann

entropy in the quantum measurement process. In Section 5 we consider the
several examples of quantum measurement processes to examine the general

results obtained in Sections 3 and 4. We investigate the normal unitary process

and the SU(2) and SU(1, 1) processes in quantum optical systems. In Section

6 we consider the entropy change and the information gain in quantum

measurement processes of continuous observables. We can obtain the same

results as those for quantum measurement processes of discrete observables.
As examples, we investigate position and momentum measurements of a

physical system in one-dimensional space. In Section 7 we consider continu-

ous quantum measurements, such as the photon counting measurement, to

obtain information about a physical system. As an example, we investigate the

degenerate four-wave mixing process with the photon counting measurement,
which is equivalent to the continuous quantum nondemolition measurement

of the photon number of a physical system. In Section 8 we summarize

the results.

2. QUANTUM MEASUREMENT PROCESSES

In this section we briefly summarize the basic formulation of quantum

measurement processes in a suitable way for our purpose (Busch et al., 1991,

1995; Kraus, 1983), and then we introduce probability distributions that an

observable takes some values in the premeasurement and postmeasurement
quantum states, by means of which the Shannon entropies are calculated

(Shannon, 1948a, b; Shannon and Weaver, 1949). Suppose that we perform

quantum measurement on a physical system 6 to obtain some information

about an observable x ÃS in a quantum state which is described by a statistical

operator r ÃS
in which satisfies r ÃS

in $ 0 and TrS r ÃS
in 5 1, where TrS stands for the

trace operation over the Hilbert space *S of the physical system. We assume
that the measured observable x ÃS of the physical system has a spectral decom-

position given by

x ÃS 5 o
m P }

m | c S( m ) & ^ c S( m ) | 5 o
m P }

m EÃSx ( m ) (2.1)

where } represents the spectral set of the observable x ÃS and EÃSx ( m ) is a
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projection operator onto the one-dimensional eigenspace of x ÃS. In equation

(2.1) we have assumed that the observable x ÃS has nondegenerate and discrete

eigenvalues, for the sake of simplicity. The set of the eigenstates S x 5
{ | c S( m ) & | m P }} becomes a complete orthonormal system of the Hilbert

space *S , which satisfies the relations

^ c S( m 1) | c S( m 2) & 5 d m 1, m 2, o
m P }

| c S( m ) & ^ c S( m ) | 5 IÃS (2.2)

where IÃS stands for an identity operator defined on the Hilbert space *S.

To measure the observable x ÃS , we first have to prepare a measurement

apparatus !, the initial quantum state of which is described by a statistical

operator r ÃA
in. We denote the Hilbert space of the measurement apparatus as

*A. We next have the measurement apparatus interact with the physical
system to make some quantum correlation between them, which is indispens-

able for obtaining information about the physical system by means of the

measurement apparatus. Let 8ÃSA be a unitary operator that describes the state

change of the physical system and the measurement apparatus caused by the

interaction. If the interaction is represented by a Hamiltonian HÃSA
int and the

interaction time is t , the unitary operator 8ÃSA is given by

8ÃSA 5 exp 1 2 i

"
t HÃSA

int 2 (2.3)

After the interaction, the compound quantum state of the physical system

and measurement apparatus becomes

r ÃSA
out 5 8ÃSA( r ÃS

in ^ r ÃA
in)8Ã²

SA (2.4)

In this paper we ignore the individual time evolutions of the physical system

and the measurement apparatus, for the sake of simplicity, since they do not

affect our results.
We finally perform the readout of the result of the quantum measurement

process. The readout of the measurement outcome is mathematically described

by a positive operator-valued measure (POVM) defined on the Hilbert space

*A (Davies, 1976; Helstrom, 1976; Holevo, 1982). The readout which gives

the output value n is described by the POVM EÃA=( n ), which satisfies the
relations

EÃA=( n ) $ 0, o
n P 1

EÃA=( n ) 5 IÃA (2.5)

where IÃA is an identity operator defined on the Hilbert space *A , and 1
represents the set of all possible outcomes of the quantum measurement

process. If the measurement outcome n corresponds to the value of some

observable =ÃA of the measurement apparatus, the POVM EÃA=( n ) becomes a
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projection operator EÃA=( n ) 5 | f A( n ) & ^ f A( n ) | , where | f A( n ) & is the eigenstate

of the observable =ÃA 5 ( n P 1 n EÃA=( n ), which is called the pointer observable.

The set { | f A( n ) & | n P 1} is referred to as the pointer base. It should be noted
that even if the readout of the measurement outcome cannot be performed

by measuring any pointer observable =ÃA , the results obtained in this paper

are still valid since we use only relations (2.2) and (2.5) to derive the results.

The photon counting measurement, which is a continuous quantum measure-

ment of photon number (Srinivas and Davies, 1981; Srinivas, 1996; Chmara,

1987), is a typical example that there is not a pointer observable (see Sec-
tion 7).

When the measurement outcome n of the quantum measurement process

is given, the quantum state of the physical system after the measurement is

obtained from (2.4) by means of the state-reduction formula (Kraus, 1983;

Ozawa, 1983, 1984)

r ÃS
out( n ) 5

TrA[(IÃS ^ EÃA=( n )) r ÃSA
out]

TrSA[(IÃS ^ EÃA=( n )) r ÃSA
out]

(2.6)

where TrA and TrSA stand for the trace operations over the Hilbert spaces *A

and *SA 5 *S ^ *A. We refer to the quantum state r ÃS
out( n ) as the postmeasure-

ment state of the physical system. The probability P A
out( n ) that we obtain the

measurement outcome n is calculated by

P A
out( n ) 5 TrSA[(IÃS ^ EÃA=( n )) r ÃSA

out] (2.7)

where equation (2.5) ensures that P A
out( n ) is nonnegative and normalized as

( n P 1 P A
out( n ) 5 1. In the postmeasurement state r ÃS

out( n ) of the physical system,

the observable x ÃS takes the value m with probability

P S
out( m | n ) 5 TrS[EÃSx ( m ) r ÃS

out( n )] (2.8)

which is conditioned by the measurement outcome n . When we do not perform

the readout of the measurement outcome n , the postmeasurement state r ÃS
out

of the physical system becomes

r ÃS
out 5 TrA r ÃSA

out (2.9)

in which the observable x ÃS takes the value m with probability

P S
out( m ) 5 TrS[E

S
x ( m ) r ÃS

out] 5 TrSA[(EÃSx ( m ) ^ IÃA) r ÃSA
out] (2.10)

The quantum measurement in which we do (do not) perform the readout of

the measurement outcome n is called the selective (nonselective) quantum

measurement.
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There are several relations among the probabilities. We first obtain from

equations (2.7), (2.8), and (2.10)

P S
out( m ) 5 o

n P 1
P S

out( m | n )P A
out( n ) (2.11)

Note that we can define the joint probability in the compound quantum state

r ÃSA
out of the physical system and the measurement apparatus,

P SA
out( m , n ) 5 TrSA[(EÃSx ( m ) ^ EÃA=( n )) r ÃSA

out] (2.12)

Then we obtain the relations among the probabilities

P SA
out( m , n ) 5 P S

out( m | n ) P A
out( n ) (2.13)

P S
out( m ) 5 o

n P 1
P SA

out( m , n ), P A
out( n ) 5 o

m P }
P SA

out( m , n ) (2.14)

According to the Bayes theorem (Caves and Drummond, 1994), we obtain

the posterior probability P A
out( n | m ),

P A
out( n | m ) 5

P SA
out( m , n )

P S
out( m )

5
P S

out( m | n ) P A
out( n )

P S
out( m )

(2.15)

Using these probabilities, we can calculate the Shannon entropies in the
quantum measurement process.

The quantum measurement process performed on a physical system is

completely determined by the triplet M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & . Thus far we have

not restricted the initial quantum state r ÃA
in of the measurement apparatus, the

readout process described by the POVM EÃA=( n ), or the interaction between
the physical system and the measurement apparatus given by the unitary

operator 8ÃSA. The triplet M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & is usually determined so as

to satisfy the probability reproducibility condition (Busch et al., 1991, 1995)

given by the relation

P S
in( m ) 5 P A

out( n ), m 5 f ( n ) (2.16)

where P S
in( m ) represents the probability that the observable x ÃS takes the value

m in the premeasurement state r ÃS
in of the physical system,

P S
in( m ) 5 TrS[EÃSx ( m ) r ÃS

in] (2.17)

and f ( n ) is some analytic function which connects the measurement outcome

n with the value m taken by the observable x ÃS of the physical system. In this
paper, however, we do not impose the probability reproducibil ity condition

on quantum measurement processes and we will consider the information

and the entropy change in a quantum measurement process characterized by

an arbitrary triplet M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & .
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Fig. 1. Schematic representation of the quantum measurement process.

Before closing this section, we summarize the notation used throughout

this paper. In the premeasurement state r ÃS
in of the physical system, the observ-

able x ÃS takes the value m with the probability P S
in( m ). This defines the random

variable X S
in in the premeasurement state of the physical system. In the same

way we can define the random variable X S
out in the postmeasurement state

of the physical system. Since the measurement outcome n of the quantum

measurement process is governed by the probability P A
out( n ), we can define

the random variable Y A
out in the output state of the measurement apparatus.

We can also introduce the random variable Y A
in in the initial state of the

measurement apparatus. The quantum measurement process that we consider
is schematically shown in Fig. 1 in terms of these random variables. Using

the probabilities introduced above, we can calculate the Shannon entropies

(or the measurement entropies) (Cover and Thomas, 1991) in the quantum

measurement process,

H (X S
in) 5 2 o

m P }
P S

in( m ) ln P S
in( m ) (2.18)

H (X S
out) 5 2 o

m P }
P S

out( m ) ln P S
out( m ) (2.19)

H (Y A
out) 5 2 o

n P 1
P A

out( n ) ln P A
out( n ) (2.20)

H (X S
out, Y A

out) 5 2 o
m P }

o
n P 1

P SA
out( m , n ) ln P SA

out( m , n ) (2.21)

Furthermore , the conditional entropies are given by

H (X S
out | Y A

out) 5 2 o
m P }

o
n P 1

P SA
out( m , n ) ln P S

out( m | n ) (2.22)

H (Y A
out | X S

out) 5 2 o
m P }

o
n P 1

P SA
out( m , n ) ln P A

out( n | m ) (2.23)



Information and Entropy 2499

The well-known relations among the entropies are obtained from (2.15),

H (X S
out, Y A

out) 5 H (X S
out | Y A

out) 1 H (Y A
out)

5 H (Y A
out | X S

out) 1 H (X S
out) (2.24)

The mutual information H (X S
out; Y A

out) is calculated by

H (X S
out; Y A

out) 5 H (X S
out) 2 H (X S

out | Y A
out)

5 H (X S
out) 1 H (Y A

out) 2 H (X S
out, Y A

out)

5 H (Y A
out) 2 H (Y A

out | X S
out) (2.25)

Note that the Shannon mutual information is symmetric with respect to the

random variables, that is, H (X S
out; Y A

out) 5 H (Y A
out; X S

out). These entropies are

used to investigate the entropy change of the physical system in the quantum
measurement process.

3. INFORMATION GAIN IN QUANTUM MEASUREMENT
PROCESSES

We now consider the amount of information which can be extracted

from the results of the quantum measurement process about the observable

x ÃS of the physical system in the quantum state r ÃS
in. For this purpose, we first

investigate the output probability P A
out( n ) of the measurement apparatus. Sub-

stituting (2.4) into (2.7), we obtain

P A
out( n ) 5 TrSA[(IÃS ^ EÃA=( n ))8ÃSA( r ÃS

in ^ r ÃA
in)8Ã

²
SA]

5 TrSA[8Ã²
SA(IÃS ^ EÃA=( n ))8ÃSA( r ÃS

in ^ r ÃA
in)]

5 TrS[ P ÃS( n ) r ÃS
in] (3.1)

where the operator P ÃS( n ) of the physical system is given by

P ÃS( n ) 5 TrA[8Ã²
SA(IÃS ^ EÃA=( n ))8ÃSA(IÃS ^ r ÃA

in)] (3.2)

Using the properties of the POVM EÃA=( n ) of the measurement apparatus, it

is easily seen that the operator P ÃS( n ) becomes the POVM of the physical

system, which satisfies the relations

P ÃS( n ) $ 0, o
n P 1

P ÃS( n ) 5 IÃS (3.3)
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Furthermore , using the completeness relation of the eigenstate | c S( m ) & of the

observable x ÃS , we can calculate (3.1) as follows:

P A
out( n ) 5 o

m P }
^ c S( m ) | P ÃS( n ) r ÃS

in | c S( m ) &

5 o
m P }

o
m 8 P }

^ c S( m ) | P ÃS( n ) | c S( m 8) & ^ c S( m 8) | r ÃS
in | c S( m ) &

5 o
m P }

^ c S( m ) | P ÃS( n ) | c S( m ) & ^ c S( m ) | r ÃS
in | c S( m ) & 1 5( n ) (3.4)

where the quantity 5( n ) is given by

5( n ) 5 o o
m P }, m 8P }

( m Þ m 8)

^ c S( m ) | P ÃS( n ) | c S( m 8) & ^ c S( m 8) | r ÃS
in | c S( m ) & (3.5)

It should be noted that the first term on the right-hand side of equation (3.4)
includes only the diagonal elements with respect to the eigenstates of the

observable x ÃS , while the second term includes only the off-diagonal elements.

If we can prepare the physical system in one of the eigenstates of the

observable x ÃS , e.g., r ÃS
in 5 | c S( m ) & ^ c S( m ) | , the output probability of the mea-

surement apparatus becomes

PSA( n | m ) 5 ^ c S( m ) | P ÃS( n ) | c S( m ) & (3.6)

This indicates that when we repeatedly perform the quantum measurement

on identically prepared physical systems, we can obtain the probabilities

P A
out( n ) and PSA( n | m ) from the measurement outcomes. On the other hand,

the quantity 5( n ) cannot be determined by the quantum measurement process
characterized by the triplet M 5 ^ r ÃA

in, EÃA=( n ),8ÃSA & . Therefore we assume that

the quantum measurement process satisfies the relation (Fine, 1969)

^ c S( m ) | P ÃS( n ) | c S( m 8) & 5 0 ( m Þ m 8) (3.7)

The physical meaning of this relation will be considered later.
When the quantum measurement process M 5 ^ r ÃA

in, EÃA=( n ), 8ÃSA & satis-

fies relation (3.7), the output probability P A
out( n ) of the measurement appara-

tus becomes

P A
out( n ) 5 o

m P }
PSA( n | m )P S

in( m ) (3.8)

where PSA( n | m ) is given by equation (3.6). Since the operator P ÃS( n ) is the

POVM of the physical system, PSA( n | m ) satisfies the relations

PSA( n | m ) $ 0, o
n P 1

PSA( n | m ) 5 1 (3.9)

It is easy to see from equations (3.8) and (3.9) that PSA( n | m ) represents
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the conditional probability that the measurement outcome of the quantum

measurement process is given by the value n when the observable x ÃS takes

the value m in the premeasurement state r ÃS
in of the physical system. According

to the Bayes theorem (Caves and Drummond, 1994), we obtain the joint

probability PSA( n , m ) and the posterior probability PAS( m | n ) in the quantum

measurement process,

PAS( m | n ) 5
PSA( n | m )P S

in( m )

P A
out( n )

(3.10)

PSA( n , m ) 5 PSA( n | m )P S
in( m ) 5 PAS( m | n )P A

out( n ) (3.11)

It can be considered that the information about the observable x ÃS of

the physical system which is extracted from the measurement outcomes is
equivalent to the information transmitted from the physical system in the

premeasurement state to the measurement apparatus in the output state. This

means that the quantum measurement process characterized by the triplet

M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & defines a communication channel between the mea-

sured physical system and the measurement apparatus. Therefore we can

express the amount of information about the observable x ÃS of the physical
system extracted from the measurement outcomes by the mutual information

between the physical system and the measurement apparatus,

I (Y A
out; X S

in) 5 H (X S
in) 2 H (X S

in | Y A
out)

5 H (X S
in) 1 H (Y A

out) 2 H (Y A
out, X S

in)

5 H (Y A
out) 2 H (Y A

out | X S
in)

5 I (X S
in; Y A

out) (3.12)

where the entropies H (X S
in) and H (Y A

out) are given by equations (2.18) and

(2.20), and the joint entropy H (Y A
out, X S

in) and the conditional entropies

H (X S
in | Y A

out) and H (Y A
out | X S

in) are given respectively by

H (Y A
out, X S

in) 5 2 o
m P }

o
n P 1

PSA( n , m ) ln PSA( n , m ) (3.13)

H (X S
in | Y A

out) 5 2 o
m P }

o
n P 1

PSA( n , m ) ln PAS( m | n ) (3.14)

H (Y A
out | X S

in) 5 2 o
m P }

o
n P 1

PSA( n , m ) ln PSA( n | m ) (3.15)

Because of equations (3.10) and (3.11), these entropies satisfy the relation

H (Y A
out, X S

in) 5 H (Y A
out) 1 H (X S

in | Y A
out)

5 H (X S
in) 1 H (Y A

out | X S
in) (3.16)
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Comparing equation (2.16) with equation (3.8) and using equations (3.12) ±

(3.15), we find that under our assumption [see (3.7)], the probability reproduc-

ibility condition is equivalent to the entropic relation given by H (X S
in | Y A

out) 5
H (Y A

out | X S
in) 5 0, or equivalently I (Y A

out; X S
in) 5 H (X S

in) 5 H (Y A
out). In Section

4 the information gain I (Y A
out; X S

in) is compared with the entropy decrease of

the physical system caused by the quantum measurement process.

We now consider the physical meaning of relation (3.7). Since the

relation indicates that the operators P ÃS( n ) and EÃSx ( m ) are simultaneously

diagonalized, we obtain the commutation relation

[ P ÃS( n ), EÃSx ( m )] 5 0 (3.17)

Here let us introduce an operator x Ãop
S (n) of the physical system,

x Ãop
S (n) 5 o

n P 1
n n P ÃS( n )

5 TrA[8Ã²
SA(IÃS ^ =ÃA(n))8ÃSA(IÃS ^ r ÃA

in)] (3.18)

where the operator =ÃA(n) of the measurement apparatus is given by

=ÃA(n) 5 o
n P 1

n nEÃAy ( n ) (3.19)

When EÃAy ( n ) is a projection operator | f A( n ) & ^ f A( n ) | onto the eigenspace of

the pointer observable, we have =ÃA(n) 5 =Ãn
A, where =ÃA 5 ( n P 1 n | f A( n ) &

^ f A( n ) | is the spectral decomposition of the pointer observable of the measure-

ment apparatus. It should be noted that the operator x Ãop
S (n) depends only on

the quantum measurement process characterized by the triplet M 5
^ r ÃA

in, EÃA=( n ),8ÃSA & , but is independent of the observable x ÃS of the measured

physical system. Hence the operator x Ãop
S (n) is called the operational observable

(Englert and WoÂdkiewicz, 1995; Banaszek and WoÂdkiewicz, 1997; Ban,

1997c), which is not a Hermitian operator in general, while the Hermitian

operator x ÃS is called the intrinsic observable of the physical system and is

independent of the quantum measurement process. The operational observable
is also referred to as the fuzzy observable or the unsharp observable (Busch

et al., 1995; PrugovecÏ ki, 1976a, b). Using the intrinsic and operational observ-

ables, relation (3.17) can be expressed as

[ x Ãm
S , x Ãop

S (n)] 5 0 (3.20)

The condition represented by (3.7) is equivalent to the commutativity of the

intrinsic and operational observables in the quantum measurement process.

Therefore we can summarize the result in the following form.

Theorem 3.1. If the operational observable x Ãop
S (n) defined by the quantum

measurement process M 5 ^ r ÃA
in, EÃA=( n ),8ÃSA & commutes with the intrinsic
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observable x ÃS of the physical system, the amount of information

I (Y A
out; X S

in) about the intrinsic observable x ÃS extracted from the measurement

outcomes can be given by the mutual information,

I (Y A
out; X S

in) 5 o
m P }

o
n P 1

PSA( n | m )P S
in( m ) ln F PSA( n | m )

P A
out( n ) G (3.21)

where the probabilities P A
out( n ), P S

in( m ), and PSA( n | m ) are given respectively

by equations (2.7), (2.17), and (3.6).

Next let us rewrite the condition given by (3.17) or (3.20) into another

form which is used in Sections 4 and 5. Using the completeness relation of

the eigenstate | c S( m ) & of the observable x ÃS , we can express the unitary operator
8ÃSA as

8ÃSA 5 o
m P }

o
m 8P }

| c S( m ) & UÃA( m , m 8) ^ c S( m 8) | (3.22)

8Ã²
SA 5 o

m P }
o

m 8P }
| c S ( m ) & UÃ²A( m , m 8) ^ c S( m 8) | (3.23)

where the operators UÃA( m , m 8) and UÃ²A( m , m 8) of the measurement apparatus
are given by

UÃA( m , m 8) 5 ^ c S( m ) | 8ÃSA | c S( m 8) & (3.24)

UÃ²A( m , m 8) 5 ^ c S( m ) | 8Ã²
SA | c S( m 8) & (3.25)

Since the operator 8ÃSA is unitary, these operators satisfy the relation

o
m 9P }

UÃA( m , m 9) UÃ²A( m 9, m 8) 5 o
m 9P }

UÃ²A( m , m 9)UÃA( m 9, m 8) 5 d m , m 88IÃA (3.26)

When we substitute equations (3.22) and (3.23) into equation (3.2), the POVM
P ÃS( n ) of the physical system is expressed as

P ÃS( n )

5 o
m P }

o
m 8P }

o
m 9P }

| c S( m ) & TrA[UÃ²A( m , m 8)EÃA=( n )UÃA( m 8, m 9) r ÃA
in] ^ c S( m 9) | (3.27)

Therefore it is found from this equation that the condition given by (3.17)

or (3.20) can be stated in the following form.

Condition 3.1. The quantum measurement process which is characterized

by the triplet M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & satisfies the relation

o
m 8P }

TrA[UÃ²A( m , m 8)EÃA=( n )UÃA( m 8, m 9) r ÃA
in]

5 d m , m 9 o
m 8P M

TrA[UÃ²A( m , m 8)EÃA=( n )UÃA( m 8, m ) r ÃA
in] (3.28)
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When this condition is satisfied, the POVM P ÃS( n ) of the physical system

and the conditional probability PSA( n | m ) in the quantum measurement process

are expressed as

P ÃS( n ) 5 o
m P }

o
m 8P }

| c S( m ) & TrA[UÃ²A( m , m 8)EÃA=( n )UÃA( m 8, m ) r ÃA
in] ^ c S( m ) | (3.29)

PSA( n | m ) 5 o
m 8P }

TrA[UÃ²A( m , m 8)EÃA=( n )UÃA( m 8, m ) r ÃA
in] (3.30)

In Sections 4, 5, and 7, we will use equations (3.28)±(3.30) to investigate

the relation between the information gain and the entropy change in the

quantum measurement process.

4. ENTROPY CHANGE OF A PHYSICAL SYSTEM

In this section we investigate the decrease of the Shannon entropy of a

physical system in the quantum measurement process characterized by the

triplet M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & . When the outcome n of the quantum measure-

ment process is obtained, the probability P S
out( m | n ) that the observable x ÃS

takes the value m in the postmeasurement state r ÃS
out( n ) of the physical system

is given by (2.8). The measurement outcome n is obtained with the probability

P A
out( n ). Thus the entropy of the physical system in the postmeasurement state

is given by

H (X S
out | Y A

out) 5 2 o
n P 1

o
m P }

P A
out( n )P S

out( m | n ) ln P S
out( m | n ) (4.1)

Then the decrease of the entropy of the physical system that is caused by

the quantum measurement process is calculated by

D H (X S
out, X S

in | Y A
out) 5 H (X S

in) 2 H (X S
out | Y A

out)

5 H (X S
in) 1 H (Y A

out) 2 H (X S
out, Y A

out) (4.2)

where the entropies H (X S
in), H (Y A

out), and H (X S
out, Y A

out) are given respectively

by equations (2.18), (2.20), and (2.21). Using (2.12), (3.22), and (3.23), we

can calculate the joint probability P SA
out( m , n ) as follows:

P SA
out( m , n ) 5 TrSA[(EÃSx ( m ) ^ EÃA=( n ))8ÃSA( r ÃS

in ^ r ÃA
in)8Ã

²
SA]

5 TrA ^ c S( m ) | (IÃS ^ EÃA=( n ))8ÃSA( r ÃS
in ^ r ÃA

in)8Ã
²
SA | c S( m ) &

5 o
m 8P }

o
m 9P }

TrA[UÃ²A( m 8, m )EÃA=( n )UÃA( m , m 9) r ÃA
in] ^ c S( m 9) | r ÃS

in | c S( m 8) &

(4.3)

To proceed further, we impose the following condition on the quantum

measurement process M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & .
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Condition 4.1. The quantum measurement process which is characterized

by the triplet M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & satisfies the relation

TrA[UÃ²A( m , m 8)EÃA=( n )UÃA( m 8, m 9) r ÃA
in]

5 d m , m 9 TrA[UÃ²
A( m , m 8)FÃA=( n )UÃ

A( m 8, m ) r ÃA
in] (4.4)

It is easy to see that this condition is stronger than Condition 3.1. In
fact, when Condition 4.1 is satisfied by the quantum measurement process,

Condition 3.1 is always fulfilled. Under Condition 4.1, the joint probability

P SA
out ( m , n ) becomes

P SA
out( m , n ) 5 o

m 8P }
TrA[UÃ²A( m 8, m )EÃA=( n )UÃA( m , m 8) r ÃA

in]P
S
in( m 8) (4.5)

Here we further impose the following condition on the quantum measure-

ment process.

Condition 4.2. The quantum measurement process which is characterized

by the triplet M 5 ^ r ÃA
in, EÃA=( n ),8ÃSA & satisfies the relation

TrA[UÃ²A( m 8, m )EÃA=( n )UÃA( m , m 8) r ÃA
in]

5 d m 8, f( m ; n ) TrA[UÃ²A( f ( m ; n ), m ) EÃA=( n )UÃA( m , f ( m ; n )) r ÃA
in] (4.6)

where f ( m ; n ) P } is a function of m that in general depends on the outcome

n of the quantum measurement process.

Furthermore, if f ( m ; n ) Þ m , we introduce the following condition.

Condition 4.3. The conditional probability PSA( n | m ) given by (3.6) or
(3.30) and the spectral set } of the observable x ÃS satisfy the relation

o
m P }

P SA( n | f ( m ; n ))F ( f ( m ; n )) 5 o
m P }

PSA( n | m )F( m ) (4.7)

for any nonsingular function F( m ).

Using equations (3.24) and (3.25), we find that Conditions 4.1 and 4.2
can be unified in the following relation:

TrA[8Ã²
SA(EÃSx ( m ) ^ EÃA=( n ))8ÃSA(IÃS ^ r ÃA

in)] 5 PSA( n | f ( m ; n ))EÃSx ( f ( m ; n )) (4.8)

When the quantum measurement process satisfies Conditions 4.1±4.3,

we can obtain the joint probability from (4.5),

P SA
out( m , n ) 5 PSA( n | f ( m ; n ))P S

in ( f ( m ; n )) (4.9)
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where we have used the fact that under Condition 4.2, the conditional probabil-

ity PSA( n | m ) given by (3.30) becomes

PSA( n | m ) 5 TrA[UÃ²A( m , f 2 1 ( m ; n )) EÃA=( n )UÃA( f 2 1( m ; n ), m ) r ÃA
in] (4.10)

where f 2 1 ( m ; n ) is an inverse of the function f ( m ; n ). In addition, if the

function f ( m ; n ) does not depend on the measurement outcome n , namely

f ( m ; n ) 5 f ( m ), taking the summation of (4.9) with respect to n yields

the equality

P S
out( m ) 5 P S

in ( f ( m )) (4.11)

where the probability P S
out( m ) is given by equation (2.10). We have found

that under Conditions 4.1±4.3, the joint probability P SA
out ( m , n ) is greatly

simplified. We will see that there are many quantum measurement processes

that satisfy these conditions (see Sections 5±7).

Finally when the quantum measurement process satisfies Conditions

4.1±4.3, we can obtain the decrease of the entropy D H (X S
out, X S

in | Y A
out) of the

physical system in the quantum measurement process,

D H (X S
out, X S

in | Y A
out)

5 H (X S
in) 1 H (Y A

out) 1 o
m P }

o
n P 1

PSA( m , n ) ln PSA( m , n )

5 H (X S
in) 1 H (Y A

out)

1 o
m P }

o
n P 1

PSA( n | f ( m ; n )) P S
in( f ( m ; n )) ln[PSA( n | f ( m ; n ))P S

in ( f ( m ; n ))]

5 H (X S
in) 1 H (Y A

out) 1 o
m P }

o
n P 1

PSA( n | m )P S
in( m ) ln[PSA( n | m )P S

in( m )]

5 H (Y A
out) 1 o

m P }
o

n P 1
PSA( n | m ) P S

in( m ) ln PSA( n | m )

5 H (Y A
out) 2 H (Y A

out | X S
in) (4.12)

Comparing this result with equation (3.12), we find that the entropy decrease

of the physical system caused by the quantum measurement process is equal

to the amount of information about the observable x ÃS of the physical system

that can be extracted from the measurement outcomes. Thus we obtain the

equality

I (Y A
out; X S

in) 5 D H (X S
out, X S

in | Y A
out) (4.13)
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Furthermore , substituting (3.12) and (4.2) into this equation, we obtain the

relation between the conditional entropies,

H (X S
in | Y A

out) 5 H (X S
out | Y A

out) (4.14)

This result indicates that when we obtain the measurement outcome, the
uncertainty of the observable x ÃS in the premeasurement state of the physical

system is equal to that in the postmeasurement state. Therefore we can

summarize the results in the following theorem.

Theorem 4.1. When the quantum measurement process M 5
^ r ÃA

in, EÃA=( n ), 8ÃSA & satisfies Conditions 4.1±4.3, the entropy decrease of the

physical system is equal to the amount of information extracted from the
measurement outcomes,

I (Y A
out; X S

in) 5 D H (X S
out, X S

in | Y A
out)

In this case, the the equality H (X S
in | Y A

out) 5 H (X S
out | Y A

out) is also established,

which indicates that although the quantum state of the physical system changes

due to the quantum measurement process, the uncertainty of the observable

x ÃS in the premeasurement state is equal to that in the postmeasurement state

when the measurement outcome is obtained.

It is important to note that Conditions 4.1±4.3 are sufficient, but not

necessary, for this theorem to be established.

Before closing this section, we compare the change of the Shannon

entropy with that of the von Neumann entropy in the quantum measurement

process M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & . Suppose that the premeasurement state r ÃS

in of
the physical system is prepared in the statistical mixture of the eigenstates

of the observable x ÃS which is given by

r ÃS
in 5 o

m P }
P S

in( m ) | c S( m ) & ^ c S( m ) | (4.15)

In this case, the von Neumann entropy S (X S
in) and the Shannon entropy

H (X S
in) of the premeasurement state of the physical system are equal,

S (X S
in) 5 2 TrS[ r ÃS

in ln r ÃS
in]

5 2 o
m P }

P S
in( m ) ln P S

in( m ) 5 H (X S
in) (4.16)

On the other hand, in the postmeasurement state of the physical system, the

von Neumann entropy is calculated to be

S (X S
out | Y A

out) 5 2 o
n P 1

P A
out( n )TrS[ r ÃS

out( n ) ln r ÃS
out( n )]

# 2 o
n P 1

P A
out( n ) o

m P }
^ c S( m ) | r ÃS

out( n ) | c S( m ) & ln ^ c S( m ) | r ÃS
out( n ) | c S( m ) &
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5 2 o
n P 1

P A
out( n ) o

m P }
(TrS[EÃSx ( m ) r ÃS

out ( n )]) ln (TrS[EÃSx ( m ) r ÃS
out( n )])

5 2 o
n P 1

o
m P }

P A
out( n ) P S

out( m | n ) ln P S
out( m | n )

5 H (X S
out | Y A

out) (4.17)

where we have used the concavity of the entropic function [ f (x) 5 2 x ln

x] (Wehrl, 1987) or Jensen’ s inequality in information theory (Cover and

Thomas, 1991). Using (4.16) and (4.17), we obtain the relation for the decrease
of the von Neumann entropy

D S (X S
out, X S

in | Y A
out) 5 S (X S

in) 2 S (X S
out | Y A

out)

$ H (X S
in) 2 H (X S

out | Y A
out)

5 D H (X S
out, X S

in | Y A
out) (4.18)

Thus when the premeasurement state of the physical system is given by

equation (4.15), the decrease of the von Neumann entropy is no less than

that of the Shannon entropy.
We next consider the case that the postmeasurement state r ÃS

out( n ) of the

physical system is the statistical mixture of the eigenstates of the observ-

able x ÃS ,

r ÃS
out( n ) 5 o

m P }
P S

out( m | n ) | c S( m ) & ^ c S( m ) | (4.19)

Then it is easily seen that the following equality holds:

S (X S
out | Y A

out) 5 H (X S
out | Y A

out) (4.20)

Since the inequality S (X S
in) # H (X S

in) is satisfied in general, the decrease of

the von Neumann entropy is no greater than that of the Shannon entropy,

D S (X S
out, X S

in | Y A
out) # D H (X S

out, X S
in | Y A

out) (4.21)

Therefore we can summarize the result in the following theorem.

Theorem 4.2. The decreases of the Shannon entropy and the von Neu-
mann entropy of the physical system in the quantum measurement processes

M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & satisfy the inequalities

D H (X S
out, X S

in | Y A
out) # D S (X S

out, X S
in | Y A

out) for [ x ÃS , r ÃS
in] 5 0 (4.22)

D H (X S
out, X S

in | Y A
out) $ D S (X S

out, X S
in | Y A

out) for [ x ÃS , r ÃS
out( n )] 5 0 (4.23)

where the equality holds for [ x ÃS , r ÃS
in] 5 [ x ÃS , r ÃS

out( n )] 5 0.
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We finally note that the change of the von Neumann entropy in the

quantum measurement process has been investigated in detail by several

authors (Groenewold, 1971; Lindblad, 1973; Ozawa, 1986).

5. EXAMPLES OF QUANTUM MEASUREMENT PROCESSES

In this section we consider several examples of quantum measurement

processes to examine the general results obtained in Sections 3 and 4. In

particular, we pay attention to whether Conditions 4.1±4.3 are satisfied or
not by the quantum measurement processes and to whether the equality

between the entropy decrease of the physical system and the amount of the

information extracted from the measurement outcomes is established or not.

The examples considered here include the normal unitary process (Beltrametti

et al., 1989) and the SU(2) and SU(1, 1) processes with photon number

measurement (Ban, 1996a).

5.1. Normal Unitary Process

We first consider the normal unitary process (Beltrametti et al., 1989)

by means of which we obtain the information about the observable x ÃS of the

physical system in the quantum state r ÃS
in. The normal unitary process which

is characterized by the triplet M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA is set up in the follow-

ing way.

1. The measurement apparatus is prepared in a pure quantum state

| f A
in & before the interaction with the physical system. Thus we have

r ÃA
in 5 | f A

in & ^ f A
in | .

2. The readout of the measurement outcome is performed by measuring

a pointer observable =ÃA which corresponds to the same physical

quantity as that represented by the intrinsic observable x ÃS of the
physical system, that is, =ÃA 5 x ÃA. In this case we have 1 5 }.

When we denote the eigenstate of the pointer observable =ÃA as

| f A( n ) & , the POVM EÃA=( n ) of the measurement apparatus becomes

the projection operator EÃA=( n ) 5 | f A( n ) & ^ f A( n ) | .
3. The unitary operator 8ÃSA which describes the state change caused

by the interaction between the physical system and the measurement
apparatus is defined by the relation

8ÃSA( | c S( m ) & ^ | f A
in & ) 5 | c Ä S( m ) & ^ | f A( m ) & (5.1)

where | c S( m ) & is the eigenstate of the observable x ÃS and | c Ä S( m ) & is

some quantum state of the physical system that is a nonorthogona l

state in general.
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In this measurement process the compound quantum state of the physical

system and the measurement apparatus after the interaction becomes

r ÃSA
out 5 o

m P }
o

m 8P }
^ c S( m ) | r ÃS

in | c S( m 8) & | c Ä S( m ) & ^ c Ä S( m 8) | ^ | f A( m ) & ^ f A( m 8) | (5.2)

The postmeasurement state r ÃS
out( n ) of the physical system after the measure-

ment outcome n was obtained and the probability P A
out( n ) of the measurement

outcome n are calculated from (2.6), (2.7), and (5.2),

r ÃS
out( n ) 5 | c Ä S( n ) & ^ c Ä S( n ) | (5.3)

P A
out( n ) 5 ^ c S( n ) | r ÃS

in | c S( n ) & 5 P S
in( n ) (5.4)

It is clear from equation (5.4) that the normal unitary process satisfies the

probability reproducibility condition. Furthermore, (5.4) shows that the condi-

tional probability PSA( n | m ) and the posterior probability PSA( m | n ) are given by

PSA( n | m ) 5 PAS( m | n ) 5 d m , n (5.5)

which indicates that H (X S
in | Y A

out) 5 H (Y A
out | X S

in) 5 0. Thus the amount of

information obtained from the measurement outcomes is equal to the entropies
of the premeasurement state of the physical system and of the output state

of the measurement apparatus,

I (Y A
out; X S

in) 5 H (X S
in) 5 H (Y A

out) (5.6)

It is seen from the definition (5.1) that the operators UÃA( m , m 8) and

UÃ²A( m , m 8) of the measurement apparatus [see (3.24) and (3.25)] satisfies

the relation

TrA[UÃ²A( m 1, m 2)EÃA=( n )UÃA( m 3, m 4) r ÃA
in]

5 d n , m 1
d m 1, m 4

^ c Ä S( m 1) | c S( m 2) & ^ c S( m 3) | c Ä S( m 1) & (5.7)

which ensures that Conditions 3.1 and 4.1 are fulfilled. Then it is easy to

see from (3.29) and (3.30) that P ÃS( n ) 5 | c S( n ) & ^ c S( n ) | and PSA( n | m ) 5 d m , n

are obtained; which is consistent with (5.5). Thus the operational observable
x Ãop

S (n) defined by the normal unitary process [see (3.18)] is equal to the

intrinsic observable x Ãn
S of the physical system.

In the postmeasurement state r ÃS
out( n ) of the physical system, the observ-

able x ÃS takes the value m with probability P S
out( m | n ) 5 | ^ c S( m ) | c Ä S( n ) & | 2. Then

the entropy decrease of the physical system in the normal unitary process is
obtained from (4.2),

D H (X S
out, X S

in | Y A
out)

5 H (X S
in) 1 o

m P }
o

n P }
P S

in( n ) | ^ c S( m ) | c Ä ( n ) & | 2 ln | ^ c S( m ) | c Ä ( n ) & | 2 (5.8)
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Furthermore it is seen from equation (5.7) that Condition 4.2 is satisfied if

and only if the quantum state | c Ä S( m ) & of the physical system after the measure-

ment is one of the eigenstates of the observable x ÃS , that is, | c Ä S( m ) & 5 | c S( f ( m )) &
with f ( m ) P }. In this case, the second term on the right-hand side of (5.8)

vanishes and thus the entropy decrease of the physical system becomes equal

to the amount of information obtained in the normal unitary process,

D H (X S
out, X S

in | Y A
out) 5 I (Y A

out; X S
in) 5 H (X S

in) 5 H (Y A
out) (5.9)

It is seen from equations (4.6), (5.7), and (5.8) that Condition 4.2 is necessary
for the second term on the right-hand side of (5.8) to vanish. This means

that Condition 4.2 is necessary and sufficient for (5.9) to be established in

the normal unitary process. When the quantum state | c Ä S( m ) & is the eigenstate

of the observable x ÃS , the normal unitary process is called the von Neumann±

LuÈ ders measurement (Busch et al., 1991). Therefore the normal unitary

process must be the von Neumann±LuÈ ders measurement for the amount of
information extracted from the measurement outcomes to equal the entropy

decrease of the physical system. Since we have [ x ÃS , r ÃS
out( n )] 5 0 for the

normal unitary process of the von Neumann±LuÈ ders type, the decrease of

the Shannon entropy is no less than that of the vou Neumann entropy (see

Theorem 4.2).

5.2. SU(2) and SU(1, 1) Processes

We next consider the SU(2) and SU(1, 1) processes in quantum optical
system, which are realized, respectively, by means of a lossless beam splitter

and a nondegenerate parametric amplifier, to obtain the information about

the photon number x ÃS 5 aÃ²SaÃS [EÃSx (n) 5 | nS & ^ nS | ] of the physical system, where

aÃS and aÃ²S are bosonic annihilation and creation operators and | nS & is the

photon-number eigenstate (aÃ²SaÃS | nS & 5 n | nS & ). The quantum measurement pro-

cess which is characterized by the triplet M 5 ^ r ÃA
in, EÃAY(n), 8ÃSA & is set up in

the following way.

1. The measurement apparatus is prepared in the vacuum state r ÃA
in 5

| 0A & ^ 0A | before the interaction with the physical system.

2. The readout of the measurement outcome is performed by measuring

the pointer observable of the measurement apparatus, that is, the

photon number operator, =ÃA 5 aÃ²AaÃA, where aÃA and aÃ²A are bosonic

annihilation and creation operators. Thus we have EÃA=(n) 5
| nA & ^ nA | and 1 5 } 5 N , where | nA & is the eigenstate of the photon

number operator of the measurement apparatus (aÃ²AaÃA | nA & 5
n | nA & ) and N is the set of all nonnegative integers.

3. The unitary operator 8ÃSA that describes the state change caused by
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the interaction between the physical system and the measurement

apparatus is given by

8ÃSA 5 exp[ 2 u (JÃSA
1 2 JÃSA

2 )] for the SU(2) process (5.10)

8ÃSA 5 exp[ u (KÃSA
1 2 KÃSA

2 )] for the SU(1, 1) process (5.11)

where JÃSA
6 and JÃSA

0 are the generators of the SU(2) Lie algebra and

KÃSA
6 and KÃSA

0 are the generators of the SU(1, 1) Lie algebra,

JÃSA
1 5 aÃ²SaÃA , JÃSA

2 5 aÃSaÃ
²
A , JÃSA

0 5
1

2
(aÃ²SaÃS 2 aÃ²AaÃA) (5.12)

KÃSA
1 5 aÃ²S aÃ²A, KÃSA

2 5 aÃSaÃA, KÃSA
0 5

1

2
(aÃ²SaÃS 1 aÃ²AaÃA 1 1) (5.13)

which satisfy the SU(2) and SU(1, 1) Lie commutation relations,

[JÃSA
1 , JÃSA

2 ] 5 2JÃSA
0 , [JÃSA

0 , JÃSA
6 ] 5 6 JÃSA

6 (5.14)

[KÃSA
2 , KÃSA

1 ] 5 2KÃSA
0 , [KÃSA

0 , KÃSA
6 ] 5 6 KÃSA

6 (5.15)

In the following, we first consider the SU(2) process and then the

SU(1, 1) process.

5.2.1. SU(2) Process

In the SU(2) process, the compound quantum state of the physical system
and the measurement apparatus after the interaction is calculated from (2.4)

and (5.10) (Ban, 1994, 1996a),

r ÃSA
out 5 o

`

m 5 0
o
`

n 5 0 F 1

m!n! 1 57 2
m 1 n

G
1/2

aÃmS 71/2aÃ
²
SaÃS r ÃS

in 71/2aÃ
²
SaÃS aÃ

² n
S ^ | mA & ^ nA |

(5.16)

where 7 5 cos2 u and 5 5 sin2 u are the transmittance and reflectance of

the lossless beam splitter. The quantum state r ÃS
out(m) of the physical system

after the measurement outcome m was obtained and the probability

P A
out(m) of the measurement outcome m are given respectively by

r ÃS
out(m) 5

aÃmS 71/2aÃ
²
SaÃS r ÃS

in 71/2aÃ
²
SaÃS aÃ

² m
S

TrS[aÃmS 71/2aÃ
²
SaÃS r ÃS

in 71/2aÃ
²
S
aÃ

S aÃ
² m
S ]

(5.17)

P A
out(m) 5 o

`

n 5 m

n!

m!(n 2 m)!
5m7n 2 m ^ nS | r ÃS

in | nS & (5.18)
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These results are equivalent to those obtained for the continuous measurement

of photon number that obeys the quantum Markov process (Ban, 1994). The

matrix element of the unitary operator 8ÃSA given by (5.10) is calculated to be

^ mA , nS | 8ÃSA | n 8S, 0A & 5 ^ mA | UÃA(n, n8) | 0A & 5 ! F (m, n8) d n,n8 2 m (5.19)

with

F (m, n) 5
n!

m!(n 2 m)!
5m7n 2 m (5.20)

Using equation (5.19), we obtain the following relation:

TrA[UÃ²A(n1, n2)EÃA=(m)UÃA(n3, n4) r ÃA
in]

5 ! F (m, n1)F (m, n4) d n2,n1 2 m d n3,n4 2 m (5.21)

It is easy to see from this relation that Conditions 3.1 and 4.1±4.3 with

f (n; m) 5 n 1 m are fulfilled in the SU(2) process with the photon number

measurement. Therefore the entropy decrease of the physical system is equal

to the amount of information extracted from the measurement outcomes (see

Theorem 4.1).

Substituting equation (5.21) into equation (3.29), we obtain the POVM
P ÃS(m) of the physical system in the SU(2) process with the photon num-

ber measurement,

P ÃS(m) 5 o
`

n 5 0
F (m, n) | nS & ^ nS | (5.22)

which indicates that the conditional probability is given by PSA(m | n) 5
^ nS | P ÃS(m) | nS & 5 F (m, n). This is consistent with (5.18). Then the operational

observable x Ãop
S (m) of the system defined by the SU(2) process with the photon

number measurement is given by

1Ãop
S (n) 5 o

`

m 5 0

m n P ÃS(m) 5
- n

- j n &ÃS( j ) Z j 5 0

(5.23)

with

&ÃS( j ) 5 [1 1 5(e j 2 1)]aÃ
²
S
aÃS (5.24)

In particular, we obtain for n 5 1 and n 5 2,

1Ãop
S (1) 5 5aÃ²SaÃS , 1Ãop

S (2) 5 (5aÃ²SaÃS)
2 1 5(1 2 5)aÃ²SaÃS (5.25)

which clearly shows that 1Ãop
S (n) Þ [1Ãop

S (1)]n. It is obvious from equations

(5.23) and (5.24) that the operational observable 1Ãop
S (n) commutes with the
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intrinsic observable 1ÃS 5 aÃ²SaÃS. Furthermore, it is easily seen from (5.17)

that if the premeasurement state r ÃS
in is diagonal with respect to the photon-

number eigenstate | nS & , the postmeasurement state r ÃS
out(m) of the physical

system is also diagonal. In this case, the decrease of the Shannon entropy

becomes equal to that of the von Neumann entropy (see Theorem 4.2).

Finally we show by explicit calculation the equality between the entropy

decrease of the physical system and the amount of information extracted

from the measurement outcomes. The amount of information obtained from

the results of the SU(2) process with the photon number measurement is
given by

I (Y A
out; XS

in) 5 o
`

m 5 0
o
`

n 5 0
PSA(m | n)P S

in(n) ln F PSA(m | n)

P A
out(m) G (5.26)

where P S
in(n) 5 ^ nS | r ÃS | nS & . On the other hand, the entropy decrease in the

measurement process is given by

D H (X S
out, X S

in | Y A
out) 5 2 o

`

n 5 0
P S

in (n) ln P S
in(n)

1 o
`

n 5 0
o
`

m 5 0

P A
out(m) ^ nS | r ÃS

out(m) | nS & ln ^ nS | r ÃS
out(m) | nS & (5.27)

Since from (5.17) we obtain

^ nS | r ÃS
out(m) | nS & 5

PSA(m | n 1 m)P S
in(n 1 m)

o
`
n 5 0 PSA(m | n 1 m)P S

in(n 1 m)

5
PSA(m | n 1 m)P S

in(n 1 m)

P A
out(m)

(5.28)

we can calculate the entropy decrease D H (X S
out, X S

in | Y A
out) as follows:

D H (X S
out, X S

in | Y A
out) 5 2 o

`

n 5 0

P S
in(n) ln P S

in(n)

1 o
`

m 5 0
o
`

n 5 0

PSA(m | n 1 m)P S
in(n 1 m)

3 ln F PSA(m | n 1 m)P S
in(n 1 m)

P A
out(m) G

5 2 o
`

n 5 0

P S
in(n) ln P S

in(n)
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1 o
`

m 5 0
o
`

n 5 0
PSA(m | n)P S

in(n) ln F PSA(m | n)P S
in(n)

P A
out(m) G

5 o
`

m 5 0
o
`

n 5 0

PSA(m | n)P S
in(n) ln F PSA(m | n)

P A
out(m) G

5 I (Y A
out; X S

in) (5.29)

where we have used the relation

o
`

n 5 0

PSA(m | n 1 m)P S
in(n 1 m) 5 o

`

n 5 m
PSA(m | n)P S

in(n)

5 o
`

n 5 0

PSA(m | n)P S
in(n) (5.30)

which indicates that Condition 4.3 is fulfilled. Therefore we have shown by
explicit calculation the equality D H (X S

out, X S
in | Y A

out) 5 I (Y A
out; X S

in) in the

SU(2) process with the photon number measurement.

5.2.2. SU(1, 1) Process

We next consider the SU(1, 1) process with the photon number measure-
ment. From (2.4) and (5.11) we obtain the compound quantum state of the

physical system and the measurement apparatus after the interaction (Ban,

1994, 1997a),

r ÃSA
out 5 o

`

m 5 0
o
`

n 5 0

+1/2(m 1 n)

! m!n!
aÃ² m

S _1/2aÃSaÃ
²
S r ÃS

in_
1/2aÃS aÃ

²
SaÃnS ^ | mA & ^ nA | (5.31)

where we have defined the parameters + 5 tanh2 u and _ 5 1/ cosh2 u
(+ 1 _ 5 1). The postmeasurement state r ÃS

out(m) of the physical system after

the measurement outcome m was obtained and the probability P A
out(m) of the

measurement outcome m are given respectively by

r ÃS
out(m) 5

aÃ² m
S _1/2aÃSaÃ²S r ÃS

in _1/2aÃSaÃ²SaÃmS

TrS[aÃ
² m
S _1/2aÃSaÃ²S r ÃS

in_
1/2aÃSaÃ²SaÃmS ]

(5.32)

P A
out(m) 5 o

`

n 5 0

(n 1 m)!

m!n!
+m_n 1 1 ^ nS | r ÃS

in | nS & (5.33)

Comparing these equations with (5.16) and (5.17), we find the similarity

between the SU(2) and SU(1, 1) processes with the photon number measure-

ment. If we exchange the annihilation (creation) operators with the creation

(annihilation) operators, we obtain the results for the SU(2) [SU(1, 1)] process
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from the SU(1, 1) [SU(2)] process. The matrix element of the unitary operator

8ÃSA given by (5.11) is calculated to be

^ mA , nS | 8ÃSA | n 8S, 0A & 5 ^ mA | UÃA (n, n8) | 0A & 5 ! G (m, n8) d n,n8 1 m (5.34)

with

G (m, n) 5
(n 1 m)!

m!n!
+m_n 1 1 (5.35)

which yields the relation

TrA[UÃ²A(n1, n2)EÃA=(m)UÃA(n3, n4) r ÃA
in]

5 ! G (m, n1)G (m, n4) d n2,n1 1 m d n3,n4 1 m (5.36)

Thus we find from this relation that Conditions 3.1 and 4.1±4.3 with

f (n; m) 5 n 2 m are fulfilled in the SU(1, 1) process with the photon number

measurement. Therefore the entropy decrease of the physical system is equal

to the amount of information obtained from the measurement outcomes.

Substituting (5.36) into (3.29), we obtain the POVM P ÃS(m) of the physi-
cal system in the SU(1, 1) process with the photon counting measurement,

P ÃS(m) 5 o
`

n 5 0

G (m, n) | nS & ^ nS | (5.37)

which indicates that the conditional probability is given by PSA(m | n) 5
G (m, n). This result is consistent with (5.33). The operational observable

x Ãop
S (m) of the physical system defined by the SU(1, 1) process with the photon

number measurement is given by

1Ãop
S (n) 5 o

`

m 5 0
m n P ÃS(m) 5

- n

- j n &ÃS( j ) Z j 5 0

(5.38)

with

&ÃS( j ) 5 1 _

1 2 +e j 2
aÃSaÃ²S

(5.39)

In particular, we obtain for n 5 1 and n 5 2,

1Ãop
S (1) 5

+

_
aÃSaÃ

²
S, 1Ãop

S (2) 5 1 +_ aÃSaÃ
²
S 2

2

1
+

_ 1 1 1
+

_ 2 aÃSaÃ
²
S (5.40)

where the parameter +/_ 5 sinh2 u represents the enhanced vacuum fluctua-

tion caused by the nondegenerate parametric amplifier (Walls and Milburn,

1994). Furthermore, as we have seen in the case of the SU(2) process, the



Information and Entropy 2517

decrease of the Shannon entropy becomes equal to that of the von Neumann

entropy if the premeasurement state r ÃS
in of the physical system is diagonal

with respect to the photon-number eigenstate | nS & .
Before closing this section, we show by explicit calculation the equality

between the entropy decrease of the physical system and the amount of

information obtained from the measurement outcomes. The amount of infor-

mation obtained from the measurement outcomes is given by (5.26) and the

entropy decrease of the physical system in the measurement process is given

by (5.27). In the case of the SU(1, 1) process, instead of (5.28), we obtain
from (5.32)

^ nS | r ÃS
out(m) | nS & 5

PSA(m | n 2 m)P S
in(n 2 m)

o
`
n 5 0 PSA(m | n 2 m) P S

in(n 2 m)

5
PSA(m | n 2 m)P S

in(n 2 m)

P A
out(m)

(5.41)

Thus we can calculate the entropy decrease D H (X S
out, X S

in | Y A
out) as follows:

D H (X S
out, X S

in | Y A
out) 5 2 o

`

n 5 0

P S
in(n) ln P S

in(n)

1 o
`

m 5 0
o
`

n 5 0

PSA(m | n 2 m)P S
in(n 2 m)

3 ln F PSA(m | n 2 m)P S
in(n 2 m)

P A
out(m) G

5 2 o
`

n 5 0

P S
in(n) ln P S

in(n)

1 o
`

m 5 0
o
`

n 5 0
PSA(m | n)P S

in(n) ln F PSA(m | n)P S
in(n)

P A
out(m) G

5 o
`

m 5 0
o
`

n 5 0
PSA(m | n)P S

in(n) ln F PSA(m | n)

P A
out(m) G

5 I (Y A
out; X S

in) (5.42)

where we have used the relation

o
`

n 5 0

PSA(m | n)P S
in(n) 5 o

`

n 5 m
PSA(m | n 2 m)P S

in(n 2 m)

5 o
`

n 5 0

PSA(m | n 2 m)P S
in(n 2 m) (5.43)
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which means that the SU(1, 1) process with the photon number measurement

satisfies Condition 4.3. Therefore we have shown by explicit calculation the

equality D H (X S
out, X S

in | Y A
out) 5 I (Y A

out; X S
in) in the SU(1, 1) process with the

photon number measurement.

6. QUANTUM MEASUREMENT OF A CONTINUOUS
OBSERVABLE

We have investigated the information about an intrinsic observable of

a physical system extracted from the measurement outcomes and the entropy

change of the measured physical system caused by the quantum measurement
processes, where we have assumed that the observables have a discrete

spectrum (discrete observable). In this section, we will consider the informa-

tion gain and the entropy change in quantum measurement processes of

observables which have a continuous spectrum (continuous observables). The

mathematically rigorous treatment of quantum measurement processes of

continuous observables has been formulated by Ozawa (1984). In this section
we will treat them in a physically acceptable way, though the treatment is

not mathematically rigorous.

6.1. Information Gain and Entropy Change

We first reformulate the results obtained in Sections 3 and 4 to consider

the information gain and entropy change in quantum measurement processes

of continuous observables. Suppose that we perform some quantum measure-

ment on a physical system to obtain the information about an observable x ÃS

which is expanded in the following form:

x ÃS 5 # m P }

d m m | c S( m ) & ^ c S( m ) | 5 # m P }

d m m EÃSx ( m ) (6.1)

where EÃSx ( m ) 5 | c S( m ) & ^ c S( m ) | is a projection operator onto the eigenspace

of the observable x ÃS and } represents the spectral set. We assume that the

eigenstate | c S( m ) & of the observable x ÃS satisfies the relations,

^ c S( m 1) | c S( m 2) & 5 d ( m 1 2 m 2), # m P }

d m | c S( m ) & ^ c S( m ) 5 IÃS (6.2)

The readout of the measurement outcome whose value belongs to an infinitesi-

mal interval [ n , n 1 d n ) is described by the POVM EÃA=( n ) d n of the measure-
ment apparatus, where the operator EÃA=( n ) satisfies

EÃA=( n ) $ 0, # n P 1

d n EÃA=( n ) 5 IÃA (6.3)
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Here 1 represents the set of all possible outcomes of the quantum measure-

ment process. If the measurement outcome n is obtained by measuring the

value of a continuous pointer observable =ÃA of the measurement apparatus,
the POVM EÃA=( n ) d n becomes a projection operator EÃA=( n ) d n 5
| f A( n ) & ^ f A( n ) | d n , where | f A( n ) & is the eigenstate of the pointer observable

=ÃA. The quantum measurement process of the continuous observable is char-
acterized by the triplet M 5 ^ r ÃA

in, EÃA=( n ), 8ÃSA & , where r ÃA
in is the initial quantum

state of the measurement apparatus and 8ÃSA is the unitary operator which

describes the state change caused by the interaction between the physical

system and the measurement apparatus.

When we obtain the value n as the result of the quantum measurement
process, the postmeasurement state r ÃS

out( n ) of the physical system is given by

the reduction formula (2.6), and the probability density P A
out( n ) that the mea-

surement outcome n is obtained is given by (2.7), where the normalization

condition is modified to be * n P 1d n P A
out ( n ) 5 1. Relations (2.8)±(2.10),

(2.13)±(2.17), and (2.15) are still valid for quantum measurement processes

of continuous observables if the probabilities appearing there are replaced with
the probability densities. Relations (2.11) and (2.14) are modified as follows:

P S
out ( m ) 5 # n P 1

d n P S
out ( m | n )P A

out( n ) (6.4)

P S
out( m ) 5 # n P 1

d n P SA
out( m , n ), P A

out( n ) 5 # n P }

d m P SA
out( m , n ) (6.5)

As we have done in the quantum measurement process of the discrete observ-

able, we can introduce continuous random variables in the quantum measure-

ment process of the continuous observable. For continuous random variables,

the Shannon entropy is called the differential entropy (Cover and Thomas,

1991). Then we obtain the differential entropies in the quantum measurement
process of the continuous observable,

H (X S
in) 5 2 # m P }

d m P S
in( m ) ln P S

in( m ) (6.6)

H (X S
out) 5 2 # m P }

d m P S
out( m ) ln P S

out( m ) (6.7)

H (Y A
out) 5 2 # n P 1

d n P A
out( n ) ln P A

out( n ) (6.8)

H (X S
out, Y A

out) 5 2 # m P }

d m # n P 1

d n P SA
out( m , n ) ln P SA

out( m , n ) (6.9)
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Furthermore , the conditional entropies are given by

H (X S
out | Y A

out) 5 2 # m P }

d m # n P 1

d n P SA
out( m , n ) ln P S

out ( m | n ) (6.10)

H (Y A
out | X S

out) 5 2 # m P }

d m # n P 1

d n P SA
out ( m , n ) ln P A

out ( n | m ) (6.11)

The relations among the entropies given by (2.24) and (2.25) are valid for

the quantum measurement process of the continuous observable. It should

be noted that the differential entropy can take negative values (Cover and

Thomas, 1991).

The output probability density P A
out ( n ) of the measurement apparatus

can be expressed in the following form:

P A
out( n ) 5 TrA[ P ÃS( n ) r ÃS

in] (6.12)

where P ÃS( n ) d n is the POVM of the physical system and the operator P ÃS( n )

is given by (3.2), and satisfies the relations

P ÃS( n ) $ 0, # n P 1

d n P ÃS( n ) 5 IÃS (6.13)

For the quantum measurement process of the continuous observable, we
assume that the POVM P ÃS( n ) d n of the physical system satisfies the relation

^ c S( m ) | P ÃS( n ) | c S( m 8) & 5 d ( m 2 m 8)PSA( n | m ) (6.14)

which is equivalent to the condition given by (3.7). In this equation PSA( n | m )

represents the conditional probability density that the measurement outcome

n is obtained when the observable x ÃS of the physical system takes the value
m in the premeasurement state r ÃS

in. When this condition is satisfied, the POVM

P ÃS( n ) d n of the physical system and the output probability density P A
out( n )

of the measurement apparatus become

P ÃS( n ) 5 # m P }

d m | c S( m ) & PSA( n | m ) ^ c S( m ) | (6.15)

P A
out( n ) 5 # m P }

d m PSA( n | m )P S
in( m ) (6.16)

where P S
in( m ) 5 ^ c S( m ) | r ÃS

in | c S( m ) & is the probability density that the observ-
able x ÃS takes the value m in the premeasurement state r ÃS

in of the physical

system.

According to the Bayes theorem (Caves and Drummond, 1994), we

obtain the joint probability density PSA( n , m ) and the posterior probability
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density PAS( m | n ), which are given respectively by (3.10) and (3.11). The

amount of information I (Y A
out; X S

in) about the observable x ÃS of the physical

system extracted from the measurement outcomes is given by (3.12) ±(3.15)
in which the summation is replaced with the integration,

H (Y A
out, X S

in) 5 2 # m P }

d m # n P 1

d n PSA( n , m ) ln PSA( n , m ) (6.17)

H (X S
in | Y A

out) 5 2 # m P }

d m # n P 1

d n PSA( n , m ) ln PAS( m | n ) (6.18)

H (Y A
out | X S

in) 5 2 # m P }

d m # n P 1

d n PSA( n , m ) ln PSA( n | m ) (6.19)

which satisfy relation (3.16).

The operational observable x Ãop
S (n) of the physical system defined by

the quantum measurement process of the continuous observable x ÃS is given by

x Ãop
S (n) 5 # n P 1

d n n n P ÃS( n )

5 TrA[8Ã²
SA(IÃS ^ =ÃA(n))8ÃSA(IÃS ^ r ÃA

in)] (6.20)

where the operator =ÃA(n) of the measurement apparatus is defined by

=ÃA(n) 5 # n P 1

d n n nEÃA=( n ) (6.21)

which becomes the spectral decomposition of the pointer observable if

EÃA=( n ) is the projection operator. Using the operational and intrinsic observ-
ables of the physical system, the condition given by (6.14) is expressed as

the commutation relation [ x Ãop
S (n), x ÃS] 5 0. Therefore we can obtain the fol-

lowing theorem.

Theorem 6.1. If the operational observable x Ãop
S (n) defined by the quantum

measurement process M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & commutes with the intrinsic

observable x ÃS of the physical system, the amount of information

I (Y A
out; X S

in) about the intrinsic observable x ÃS extracted from the measurement

outcomes can be expressed by the Shannon mutual information,

I (Y A
out; X S

in)

5 # m P }

d m # n P 1

d n PSA( n | m )P S
in( m ) ln F PSA( n | m )

P A
out( n ) G (6.22)
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where the probability densities PSA( n | m ) and P A
out( n ) are given by (6.14)

and (6.16).

To investigate the relation between the information gain and the entropy
change in the quantum measurement process of the continuous observable,

let us express the unitary operator 8ÃSA in the following form:

8ÃSA 5 # m P }

d m # m 8P }

d m 8 | c S( m ) & UÃA( m , m 8) ^ c S( m 8) | (6.23)

8Ã²
SA 5 # m P }

d m # m 8P }

d m 8 | c S( m ) & UÃ²A ( m , m 8) ^ c S( m 8) | (6.24)

where the operators UÃA( m , m 8) and UÃ²A( m , m 8) of the measurement apparatus

are given by (3.24) and (3.25). Since the operator UÃSA is unitary, the operators

UÃA( m , m 8) and UÃ²A( m , m 8) satisfies the relation

# m 9P }

d m 9 UÃA( m , m 9)UÃ²A( m 9, m 8)

5 # m 9P }

d m 9 UÃ²A( m , m 9)UÃA( m 9, m 8) 5 d ( m 2 m 8)IÃA (6.25)

In terms of the operators UÃA( m , m 8) and UÃ²
A( m , m 8), the condition given by

(6.14) is expressed in the following form.

Condition 6.1. The quantum measurement process which is characterized

by the triplet M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & satisfies the relation

# m 9P }

d m 9 TrA[UÃ²A( m , m 9)EÃA=( n )UÃA( m 9, m 8) r ÃA
in]

5 d ( m 2 m 8)PSA( n | m ) (6.26)

To proceed further, we impose the following condition on the quantum
measurement process.

Condition 6.2 The quantum measurement process which is characterized
by the triplet M 5 ^ r ÃA

in, EÃA=( n ), 8ÃSA & should satisfy the relation

TrA[UÃ²A( m 8, m ) EÃA=( n )UÃA( m , m 9) r ÃA
in]

5 d ( m 8 2 m 9) d ( m 8 2 f ( m ; n ))PSA ( n | f ( m ; n )) (6.27)
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where f ( m ; n ) P } is a function of m that in general depends on n . If f ( m ;

n ) Þ m , the conditional probability density PSA( n | m ) and spectral set } satisfy

the relation,

# m P }

d m PSA( n | f ( m ; n ))F ( f ( m ; n )) 5 # m P }

d m PSA( n | m )F ( m ) (6.28)

where F ( m ) is any analytic function.

It should be noted that relation (6.27) can be expressed in the same form as

that given by (4.8).

When the quantum measurement process satisfies Condition 6.2, the
joint probability density P SA

out( m , n ) in the compound quantum state of the

physical system and the measurement apparatus after the interaction is greatly

simplified to be

P SA
out( m , n ) 5 PSA( n | f ( m ; n ))P S

in( f ( m ; n )) (6.29)

Using this result, we can calculate the joint entropy of the physical system

and the measurement apparatus as follows:

H (X S
out, Y A

out)

5 2 # m P }

d m # n P 1

d n P SA
out( m , n ) ln P SA

out( m , n )

5 2 # m P }

d m # n P 1

d n PSA( n | f ( m ; n ))P S
in ( f ( m ; n ))

3 ln [PSA( n | f ( m ; n ))P S
in( f ( m ; n ))]

5 2 # m P }

d m # n P 1

d n PSA( n | m )P S
in( m ) ln[PSA( n | m )P S

in( m )]

5 H (X S
in) 2 # m P }

d m # n P 1

d n PSA( n | m )P S
in( m ) ln PSA( n | m )

5 H (X S
in) 1 H (Y A

out) 2 # m P }

d m # n P 1

d n PSA( n | m ) P S
in( m ) ln F PSA( n | m )

P A
out( n ) G

5 H (X S
in) 1 H (Y A

out) 2 I (Y A
out; X S

in)

where we have used (6.16) and (6.28). When we obtain the measurement

outcome, the decrease of the entropy of the physical system,

D H (X S
out, X S

in | Y A
out), is calculated from (4.2). Therefore we can obtain the

following theorem.
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Theorem 6.2. When the quantum measurement process of the continuous

observable M 5 ^ r ÃA
in, EÃA=( n ), 8ÃSA & satisfies Condition 6.2, the entropy

decrease of the physical system is equal to the amount of information that
can be extracted from the measurement outcomes,

I (Y A
out; X S

in) 5 D H (X S
out, X S

in | Y A
out) (6.31)

In this case, the equality of the conditional entropies H (X S
in | Y A

out) 5
H (X S

out | Y A
out) also holds, which indicates that the uncertainty of the observable

XÃ
S in the premeasurement state is equal to that in the postmeasurement state

when the measurement outcome is obtained.

It should be noted that Condition 6.2 is sufficient, but not necessary,

for this theorem to be established.

6.2. Position and Momentum Measurements

We now consider the quantum measurement process of the canonical

position observable of a physical system in one-dimensional space to examine

the general results obtained above. Let xÃS be the canonical position operator

of the measured physical system and let | xÃS & be the position eigenstate such

that xÃS | xS & 5 x | xS & . Then we have the projection operator EÃSx (x) 5 | xS & ^ xS | and
the spectral set } 5 R , where R stands for the set of all real numbers. The

quantum measurement process M 5 ^ r ÃA
in, EÃA=( n ), UÃSA & of the position observ-

able of the physical system is set up in the following way.

1. The measurement apparatus of the position measurement is prepared

in an arbitrary quantum state r ÃA
in before the interaction with the

physical system. The measurement accuracy of position, of course,
depends on this quantum state.

2. The readout of the measurement outcome is performed by measuring

the pointer observable, which is the position operator xÃA of the

measurement apparatus. Thus we have the projection operator

EÃA=(x) 5 | xA & ^ xA | and the spectral set 1 5 R , where | xA & is the

position eigenstate of the measurement apparatus, such that
xÃA | xA & 5 x | xA & .

3. The unitary operator 8ÃSA that describes the state change caused by

the interaction between the physical system and the measurement

apparatus is given by

8ÃSA 5 exp( 2 ixÃSpÃA) (6.32)
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where pÃA is the momentum operator of the measurement apparatus

that is canonical conjugate to the position operator xÃA. In this equa-

tion, we set " 5 1 and g t 5 1, for the sake of simplicity, where
the parameter g stands for the coupling constant.

In this measurement process, the compound quantum state of the physical
system and the measurement apparatus after the interaction becomes

r ÃSA
out 5 #

`

2 `

dx #
`

2 `

dx8 #
`

2 `

dy # `

2 `

dy8 ^ xS | r ÃS
in | x 8S & ^ yA | r ÃA

in | y 8A &

3 | xS & ^ x 8S | ^ | xA 1 yA & ^ x 8A 1 y 8A | (6.33)

where we have used the relation exp( 2 iapÃA) | xA & 5 | xA 1 aA & .
The postmeasurement state r ÃS

out(r) of the physical system after the mea-

surement outcome r was obtained and the probability density P A
out(r) of the

measurement outcome r are given respectively by

r ÃS
out(r) 5 #

`

2 `

dx #
`

2 `

dy | xS & F ^ xS | r ÃS
in | yS & ^ rA 2 xA | r ÃA

in | rA 2 yA &

P A
out(r) G ^ yS | (6.34)

P A
out(r) 5 #

`

2 `

dx ^ xS | r ÃS
in | xS & ^ rA 2 xA | r ÃA

in | rA 2 xA & (6.35)

Since we have the initial probability density P S
in(x) 5 ^ xS | r ÃS

in | xS & of the physical

system, we find from (6.35) that the conditional probability density

PSA(r | x) becomes

PSA(r | x) 5 ^ rA 2 xA | r ÃA
in | rA 2 xA & (6.36)

which gives the relation

P A
out(r) 5 #

`

2 `

dx PSA(r | x)P S
in(x) (6.37)

Furthermore, the operators UÃA(x, y) 5 ^ xS | 8ÃSA | yS & and UÃ²A(x, y) 5 ^ xS | 8Ã²
SA | yS&

of the measurement apparatus satisfy the relation

TrA[UÃ²A(x,x8)EÃAy (r)UÃA(x9, x - ) r ÃA
in]

5 d (x 2 x8) d (x9 2 x - ) ^ rA 2 x 9A | r ÃA
in | rA 2 xA & (6.38)

It is easy to see from this relation that Conditions 6.1 and 6.2 with f (x; y)

5 x are fulfilled. Therefore Theorems 6.1 and 6.2 are established in the
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position measurement of the physical system. Furthermore the POVM P ÃS(r)
of the physical system is given by

P ÃS(r) 5 #
`

2 `

dx | xS & PSA(r | x) ^ xS | (6.39)

from which the operational observable x Ãop
S (n) of the physical system defined

by the position measurement is calculated to be

x Ãop
S (n) 5 #

`

2 `

dx (xÃS 1 x)n ^ xA | r ÃA
in | xA & (6.40)

It is obvious that this operational observable commutes with the intrinsic
observable xÃS of the physical system.

Since Theorem 6.2 holds in the position measurement of the physical

system, we have the equality I (Y A
out; X S

in) 5 D H (X S
out, X S

in | Y A
out). Here we

show this equality by explicit calculation of the entropy decrease

D H (X S
out, X S

in | Y A
out) of the physical system. This is an easy task when we

use the following expression of the joint probability density P SA
out(x, y) in

the compound quantum state r ÃSA
out after the interaction between the physical

system and the measurement apparatus:

P SA
out(x, y) 5 TrSA[( | xS & ^ xS | ^ | yA & ^ yA | ) r ÃSA

out]

5 ^ yA 2 xA | r ÃA
in | yA 2 xA & ^ xS | r ÃS

in | xS &

5 PSA( y | x)P S
in(x) (6.41)

which is equivalent to (6.29) with m 5 x, n 5 y, and f (x, y) 5 x. Then we

can calculate the joint entropy H (X S
out, Y A

out) as follows:

H (X S
out, Y A

out)

5 2 #
`

2 `

dx #
`

2 `

dy PSA( y | x)P S
in(x) ln[PSA( y | x)P S

in(x)]

5 H (X S
in) 2 #

`

2 `

dx #
`

2 `

dy PSA( y | x)P S
in(x) ln PSA( y | x)

5 H (X S
in) 1 H (Y A

out) 2 #
`

2 `

dx #
`

2 `

dy PSA( y | x)P S
in(x) ln F PSA( y | x)

P A
out( y) G

5 H (X S
in) 1 H (Y A

out) 2 I(Y A
out; X S

in) (6.42)

where we have used (6.22) and (6.37). Thus we have found from (4.2)

that the entropy decrease of the physical system is equal to the amount
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of information extracted from the measurement outcomes, I (Y A
out; X S

in) 5
D H (X S

out,X
S
in | Y A

out).

Finally let us rewrite the amount of information about the position
observable xÃS obtained from the measurement outcomes in another form.

Using (6.22), (6.36), and (6.37), we can calculate I (Y A
out; X S

in) as follows:

I (Y A
out; X S

in)

5 #
`

2 `

dx #
`

2 `

dy PSA(x | y)P S
in( y) ln F PSA(x | y)

P A
out(x) G

5 H(Y A
out) 1 #

`

2 `

dx #
`

2 `

dy ^ xA 2 yA | r ÃA
in | xA 2 yA & P S

in( y)

3 ln ^ xA 2 yA | r ÃA
in | xA 2 yA &

5 H(Y A
out) 1 #

`

2 `

dx #
`

2 `

dy ^ xA | r ÃA
in | xA & P S

in( y) ln ^ xA | r ÃA
in | xA & (6.43)

5 H(Y A
out) 2 H (Y A

in)

where H(Y A
in) is the differential entropy of the measurement apparatus in the

initial quantum state r ÃA
in,

H(Y A
in) 5 2 #

`

2 `

dx ^ xA | r ÃA
in | xA & ln ^ xA | r ÃA

in | xA & (6.44)

This result indicates that the amount of information about the position observ-

able xÃS obtained from the measurement outcomes is equal to the entropy

increase of the measurement apparatus in the quantum measurement process.

We have investigated the quantum measurement process of the canonical

position observable xÃS of the physical system. The same results are also

obtained for the quantum measurement process of the canonical momentum
observable of the physical system. In the momentum measurement, the intrin-

sic observable of the physical system and the pointer observable of the

measurement apparatus are canonical momentum operators,

x ÃS 5 pÃS , =ÃA 5 pÃA (6.45)

The unitary operator 8ÃSA that describes the state change caused by the

interaction between the physical system and the measurement apparatus is

given by

8ÃSA 5 exp( 2 ipÃSxÃA) (6.46)

In this case, since the quantum measurement process of the momentum
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observable satisfies Conditions 6.1 and 6.2, we obtain Theorems 6.1 and

6.2. Therefore the amount of information about the momentum observable

pÃS of the physical system extracted from the measurement outcomes is
equal to the entropy decrease of the physical system, I(Y A

out; X S
in) 5

D H (X S
out, X S

in | Y A
out), and to the entropy increase of the measurement apparatus

in the quantum measurement process, I (Y A
out; X S

in) 5 H (Y A
out) 2 H (Y A

in).

7. CONTINUOUS MEASUREMENTS

We have considered the amount of information extracted from the mea-

surement outcomes and the entropy change of the physical system in the

quantum measurement processes of discrete and continuous observables. The

quantum measurement processes in Sections 5 and 6 have used the projection

operators to obtain the results of the quantum measurement process, though

the general results obtained in Sections 3, 4, and 6 are valid for using any
POVM to obtain the measurement outcomes. Therefore we will consider a

quantum measurement process in which the readout of the measurement

outcomes cannot be described by any projection operator, or equivalently in

which the pointer observable of the measurement apparatus cannot be defined.

In this section we use the photon counting measurement (continuous quantum
measurement of photon number), which obeys the quantum Markov process

(Srinivas and Davies, 1981; Srinivas, 1996, Chmara, 1987; Ban, 1997b), to

obtain the photon number of the measurement apparatus. As an example, we

consider the degenerate four-wave mixing process (Ban, 1996b) with the

photon counting measurement, which corresponds to the continuous quantum

nondemolition measurement of the photon number of the physical system
(Braginsky and Khalili, 1992).

7.1. Photon Counting Measurement

The photon counting measurement, which obeys the quantum Markov

process, consists of two basic processes, a one-count process and a no-count

process (Srinivas and Davies, 1981; Srinivas, 1996, Chmara, 1987; Ban,

1997b). Let r ÃSA
out be the compound quantum state of the physical system and

the measurement apparatus after the interaction between them. Then we

perform the photon counting measurement on the measurement apparatus to
obtain the value of the photon number operator nÃA 5 aÃ²AaÃA. The one-count

process represents the state change which occurs when the photodetector

registers one photon of the measurement apparatus. This process is described

by the superoperator 7ÃA of the measurement apparatus. The state change
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caused by the one-count process and the probability that the one-count process

occurs in an infinitesimal time interval dt are given respectively by

r ÃSA
out ®

7ÃA r ÃSA
out

TrSA[7ÃA r ÃSA
out]

, P (1; dt) 5 TrSA[7ÃA r ÃSA
out] dt (7.1)

The no-count process represents the time evolution of the quantum state during

which the photodetector does not register any photon of the measurement

apparatus. The time evolution of the quantum state in the no-count process

and the probability that the no-count process continues during time t are

given respectively by

r ÃSA
out ®

exp(t+ÃA) r ÃSA
out

TrSA[ exp(t+ÃA) r ÃSA
out]

, P (0; t) 5 TrSA[exp(t+ÃA) r ÃSA
out] (7.2)

where the generator +ÃA is the superoperator of the measurement apparatus.

In this equation, we have ignored the time evolution of the system that is

independent of the photon counting measurement, for the sake of simplicity.

It is assumed in the photon counting process that the photodetector

cannot register more than one photon in an infinitesimal time interval dt. In

this case, the normalization condition of the photon counting probability is
given by P (0; dt) 1 P (1; dt) 5 1, which yields the relation between the

superoperators 7ÃA and +ÃA ,

TrSA[(7ÃA 1 +ÃA) r ÃSA
out] 5 0 (7.3)

This relation is used to determine the superoperators 7ÃA and +ÃA. Using the

superoperators 7ÃA and +ÃA , we can describe the m-count process that the

photodetector registers m photons of the measurement apparatus during time
t. The superoperator 1ÃA

m(t) of the m-count process is given by

1ÃA
m(t) 5 #

t

0

dtm #
tm

0

dtm 2 1 ? ? ? #
t2

0

dt1

3 SÃA(t 2 tm) 7ÃASÃA (tm 2 tm 2 1) 7ÃA ? ? ? SÃA (t2 2 t1) 7ÃASÃA(t1) (7.4)

where we have defined the superoperator SÃA(t) 5 exp(t+ÃA). In this equation

the integrand represents the process that the photodetector registers one photon
at each of the times t1, t2, . . . , tm and does not register any photon in the

rest of the time interval (0, t). The compound quantum state r ÃSA
out(m) of the

physical system and the measurement apparatus after the m-count process

and the probability P A
out(m) that the m-count process occurs are given respec-

tively by

r ÃSA
out(m) 5

1ÃA
m(t) r ÃSA

out

TrSA[1ÃA
m(t) r ÃSA

out]
, P A

out(m) 5 TrSA[1ÃA
m(t) r ÃSA

out] (7.5)
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where the probability P A
out(m) is normalized as

o
`

m 5 0

P A
out (m) 5 TrSA [e t(+ÃA 1 7ÃA)) r ÃSA

out] 5 1

which is ensured by (7.3).

To investigate the photon counting measurement, we have to determine
the superoperators 7ÃA and +ÃA explicitly. For this purpose, we assume here

that when the photodetector registers one photon of the measurement appara-

tus, the photon disappears from the measurement apparatus (Srinivas and

Davies, 1981; Srinivas, 1996). Under this assumption, the superoperator 7Ã
of the one-count process is given by

7ÃA r ÃSA
out 5 l aÃA r ÃSA

outaÃ
²
A (7.6)

where the parameter l represents the strength of the interaction between the

photon of the measurement apparatus and the photodetector. Of course, we
can use a different superoperator to describe the one-count process such as

7ÃA r ÃSA
out 5 l aÃ²A r ÃSA

outaÃA or 7ÃA r ÃSA
out 5 l aÃ²AaÃA r ÃSA

outaÃ
²
AaÃA. The former represents the

photon counting measurement with Mandel’ s quantum counter (Mandel,

1966; Ueda and Kitagawa, 1992) and the latter represents the continuous

quantum nondemolition measurement of the photon number (Ueda et al.,
1992). Even if we use these superoperators, we can obtain the results in the
same way. Using relation (7.3) and the fact that SÃA(t) r ÃSA

out should be a Hermitian

operator, we obtain the superoperator +ÃA from (7.6),

+ÃA r ÃSA
out 5 2

1

2
l (aÃ²AaÃA r ÃSA

out 1 r ÃSA
outaÃ

²
AaÃA) (7.7)

Thus the compound quantum state r ÃSA
out(m) after the m-count process and the

photon-counting probability P A
out(m) become

r ÃSA
out(m; g ) 5

exp( 2 1±2 l taÃ²AaÃA)aÃmA r ÃSA
outaÃ

² m
A exp( 2 1±2 l taÃ²AaÃA)

TrSA[aÃ² m
A exp( 2 l taÃ²AaÃA)aÃmA r ÃSA

out]
(7.8)

P A
out(m; g ) 5

1

m!
g mTrSA[aÃ² m

A exp ( 2 g aÃ²AaÃA)aÃmA r ÃSA
out]

5 o
`

n 5 m

n!

m!(n 2 m)!
g m(1 2 l )n 2 m ^ nA | TrS[ r ÃSA

out] | nA & (7.9)

where the parameter g is called the effective quantum efficiency of the

photodetector (Srinivas and Davies, 1981; Srinivas, 1996),

g 5 1 2 exp( 2 l t) (7.10)

In equations (7.8) and (7.9), we have written the quantum state and the
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probability as r ÃSA
out(m; g ) and P A

out(m; g ) to emphasize that they are obtained

by the photon counting process with the photodetector of effective quantum

efficiency g .
Let us now introduce an operator EÃA=(m; g ) of the measurement apparatus,

EÃA=(m g ) 5 o
`

n 5 m

n!

m!(n 2 m)!
g m(1 2 g )n 2 m | nA & ^ nA |

5 o
`

n 5 m

n!

m!(n 2 m)!
g m(1 2 g )n 2 m EÃA=(n) (7.11)

where EÃA=(n) 5 | nA & ^ nA | . This operator satisfies the relations

EÃA=(m; g ) $ 0, o
`

m 5 0

EÃA=(m; g ) 5 IÃA (7.12)

Thus the operator EÃA=(m; g ) is nothing but the POVM of the measurement

apparatus. Using the POVM EÃA=(m; g ), we can express the probability

P A
out(m; g ) of the measurement outcome m in the photon counting process,

P A
out(m; g ) 5 TrSA[(IÃS ^ EÃA=(m; g )) r ÃSA

out] (7.13)

The postmeasurement state r ÃS
out(m; g ) of the physical system after the mea-

surement outcome m was obtained is derived from (7.8),

r ÃS
out(m; g ) 5 TrA[ r ÃSA

out(m; g )] 5
TrA[(IÃS ^ EÃA=(m; g )) r ÃSA

out]

TrSA[(IÃS ^ EÃA=(m; g )) r ÃSA
out]

(7.14)

It is important to note that equations (7.13) and (7.14) are the same as
Eqs. (2.7) and (2.6). Therefore the general results obtained in Sections 3

and 4 hold when we perform the photon counting measurement to obtain

the photon number of the measurement apparatus. The POVM of the

measurement apparatus for the photon counting measurement is given by

(7.11) and it is not a projection operator. It should be noted that if the
effective quantum efficiency g is unity, the POVM EÃA=(m; g ) becomes the

projection operator onto the eigenspace of the photon number operator

aÃ²AaÃA, that is, lim g ® 1EÃA=(m; g ) 5 EÃA=(m) 5 | mA & ^ mA | .

7.2. Degenerate Four-Wave Mixing Process

We now consider the degenerate four-wave mixing process with the photon
counting measurement to examine the results obtained above. Suppose that we

obtain information about the photon number of the physical system by means of

this quantum measurement process. In this case we have the intrinsic observable

x ÃS 5 aÃ²SaÃS, the spectral set } 5 {0, 1, 2, . . . , ` }, and the projection operator
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EÃSx (n) 5 | nS & ^ nS | . The quantum measurement process which is characterized by

the triplet M 5 ^ r ÃAin, EÃA=( n ), 8ÃSA & is set up in the following way.

1. The measurement apparatus is prepared in the vacuum state r ÃA
in 5

| 0A & ^ 0A | before the interaction with the physical system.

2. The photon number of the measurement apparatus is obtained by
means of the photon counting measurement, which obeys the quan-

tum Markov process. The readout of the photon number is described

by the POVM EÃA=(m; g ) [see (7.11)], and we have 1 5 {0, 1, 2,

. . . , ` }.

3. The unitary operator 8ÃSA that describes the state change caused by

the interaction between the physical system and the measurement
apparatus is given by

8ÃSA 5 exp[ 2 ig1/2aÃ²SaÃS (aÃA 1 aÃ²A)] (7.15)

where the parameter g represents the coupling constant of the degen-

erate four-wave mixing process (Milburn and Walls, 1984; Ban,

1996b).

In the degenerate four-wave mixing process, the compound quantum

state of the physical system and the measurement apparatus after the interac-

tion becomes

r ÃSA
out 5 o

`

m 5 0
o
`

n 5 0

( 2 i)mi n

! m!n!
exp( 2 1±2 gnÃ2S)(g

1/2nÃS)
m r ÃS

in(g
1/2nÃS)

n

3 exp( 2 1±2 gnÃ2S) ^ | mA & ^ nA | (7.16)

where nÃS 5 aÃ²SaÃS is the photon number operator of the physical system.

Substituting (7.11) and (7.16) into (7.13) and (7.14), we obtain the

postmeasurement state r ÃS
out(m; g ) of the physical system after we obtained

the measurement outcome m and the probability P A
out(m; g ) of the measure-

ment outcome m,

r ÃS
out(m) 5

^ exp( 2 1±2gnÃ2S)nÃ
n
S r ÃS

innÃ
n
S exp( 2 1±2gnÃ2S) & (m; g )

^ TrS[exp( 2 gnÃ2S)nÃ
2n
S r ÃS

in] & (m; g )

(7.17)

P A
out(m; g ) 5 K 1

n!
g nTrS[exp( 2 gnÃ2

S)nÃ
2n
S r ÃS

in] L (m; g )

(7.18)

where ^ F(n) & (m; g ) represents the average value of F (n) by means of the bino-

mial distribution obtained in the photon counting measurement,

^ F (n) & (m; g ) 5 o
`

n 5 m

n!

m!(n 2 m)!
g m(1 2 g )n 2 mF (n) (7.19)
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The operators UÃA(n, n8) and UÃ²A(n, n8) of the measurement apparatus, which

are given by (3.24) and (3.25), satisfy the relation

TrA[UÃ²A(n1, n2) EÃA=(m; g )UÃA(n3, n4) r ÃA
in]

5 d n1, n2 d n3,n4 o
`

n 5 m

n!

m!(n 2 m)!
g m(1 2 g )n 2 m ! H (n, n1) H (n, n3) (7.20)

where H (m, n) is given by

H (m, n) 5
1

m!
(gn2)m exp( 2 gn2) (7.21)

It is easy to see from equation (7.20) that the degenerate four-wave mixing
process with the photon counting measurement satisfies Conditions 3.1

and 4.1±4.3 with f (n; m) 5 n. Therefore it is found from Theorem 4.1

that the amount of information about the photon number of the physical

system extracted from the measurement outcomes is equal to the entropy

decrease of the physical system in the quantum measurement process, that

is, I(Y A
out; X S

in) 5 D H (X S
out, X S

in | Y A
out). If the premeasurement state r ÃS

in of
the physical system is diagonal with respect to the photon-number eigenstate

| nS & , the postmeasurement state r ÃS
out(m; g ) becomes diagonal. In this case

the decrease of the Shannon entropy is equal to that of the von Neumann

entropy, D H (X S
out, X S

in | Y A
out) 5 D S (X S

out, X S
in | Y A

out) (see Theorem 4.2).

The POVM P ÃS(m; g ) of the physical system in the degenerate four-
wave mixing process with the photon counting measurement is obtained from

(3.29) and (7.20),

P ÃS(m; g ) 5 o
`

n 5 0
o
`

k 5 m

k!

m!(k 2 m)!
g m(1 2 g )k 2 m H (k, n) | nS & ^ nS | (7.22)

The conditional probability PSA(m | n; g ) that the measurement outcome is m
when the photon number observable takes the value n in the premeasurement

state of the physical system becomes

PSA(m | n; g ) 5 ^ nS | P ÃS(m; g ) | nS &

5 o
`

k 5 m

k!

m!(k 2 m)!
g m(1 2 g )k 2 m H(k, n)

5
1

m!
( g gn2)m exp ( 2 g gn2) (7.23)

which satisfies the relation

P A
out(m; g ) 5 o

`

n 5 0

PSA(m | n; g ) P S
in(n) (7.24)
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where P S
in(n) 5 ^ nS| r ÃS

in | nS & and P A
out(m; g ) is given by equation (7.18). Further-

more, using the POVM P ÃS(m; g ), we obtain the operational observable

1Ãop
S (n; g ) of the physical system defined by the quantum measurement process,

1Ãop
S (n; g ) 5 o

`

m 5 0
m n P ÃS(m; g ) 5

- n

- j n &ÃS( j ; g ) Z j 5 0

(7.25)

with

&ÃS( j ; g ) 5 exp[g g (e j 2 1)nÃ2
S] (7.26)

In particular we obtain for n 5 1 and n 5 2

1Ãop
S (1; g ) 5 g g nÃ2S, 1Ãop

S (2; g ) 5 g g nÃ2S (g g nÃ2S 1 1) (7.27)

These results indicate that the operational observable of the physical system

decreases by a factor g times that obtained in the ideal photon number measure-

ment, which is described by the projection operator EÃA=(n) 5 | nA & ^ nA | .
Finally we explicitly calculate the entropy decrease of the physical system

to check the equality I(Y A
out; X S

in) 5 D H(X S
out, X S

in | Y A
out). When we use the relation

^ nS | r ÃS
out (m; g ) | nS & 5

PSA(m | n; g ) P S
in(n)

P A
out(m; g )

(7.28)

we can calculate the entropy decrease D H g (X
S
out, X S

in | YA
out) as follows:

D H (X S
out, X S

in | Y A
out)

5 H (X S
in) 2 H (X S

out | Y A
out)

5 2 o
`

n 5 0

P S
in(n) lnP S

in(n) 1 o
`

n 5 0
o
`

m 5 0

P A
out(m; g )

3 ^ nS | r ÃS
out (m; g ) | nS & ln ^ nS | r ÃS

out (m; g ) | nS &

5 2 o
`

n 5 0
P S

in(n) ln P S
in(n) 1 o

`

m 5 0
o
`

n 5 0
PSA(m | n; g ) P S

in(n)

3 ln F PSA(m | n; g )P S
in(n)

P A
out(m; g ) G

5 o
`

m 5 0
o
`

n 5 0

PSA(m | n; g )P S
in(n) ln F PSA(m | n; g )

P A
out(m; g ) G

5 I (Y A
out; X S

in) (7.29)
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This result explicitly shows the validity of Theorem 4.1.

8. SUMMARY

In this paper we have investigated the amount of information about the

intrinsic observable of a physical system that can be extracted from the

results of the quantum measurement process and we have also considered
the decrease of the Shannon entropy of a measured physical system caused

by the quantum measurement process. When the operational observable of

the physical system defined by the quantum measurement process commutes

with the intrinsic observable of the physical system, the amount of information

about the intrinsic observable can be expressed by the mutual information
between the physical system and the measurement apparatus. If the quantum

measurement process which is characterized by the triplet M 5
^ r ÃA

in, EÃA= ( n ), 8ÃSA & satisfies Conditions 4.1±4.3 or Conditions 6.1 and 6.2, the
entropy decrease of the physical system caused by the quantum measurement

process becomes equal to the information gain. Furthermore , it has been

shown in the quantum measurement processes of discrete observables that

if the statistical operator of the postmeasurement state (the premeasurement

state) of the physical system commutes with the intrinsic observable of the
physical system, the decrease of the Shannon entropy is no less (no greater)

than that of the von Neumann entropy in the quantum measurement process.

The main results obtained in this paper are summarized in Theorems 3.1,

4.1, 4.2, 6.1, and 6.2.

We have considered several examples of quantum measurement pro-

cesses to examine the general results. The normal unitary process which
satisfies the probability reproducibility condition and the SU(2) and SU(1,

1) processes with the photon number measurement in quantum optical systems

have been considered as examples that satisfy Conditions 4.1±4.3. Further-

more, the position and momentum measurements of a physical system have

been considered to show that the general results are still valid for quantum

measurement processes of continuous observables. In these quantum measure-
ment processes, the readout of the measurement outcomes is performed by

measuring the pointer observable of the measurement apparatus, which has

a discrete or continuous spectrum. The general results obtained in this paper,

however, are established in quantum measurement processes where the pointer

observable of the measurement apparatus cannot be defined. To show this

explicitly, we have considered the quantum measurement process in which
the readout of the measurement outcome is performed by the photon counting

measurement (the continuous measurement of photon number), which obeys

the quantum Markov process. As an example, we have investigated the

degenerate four-wave mixing process with the photon counting measurement,
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which is equivalent to the continuous quantum nondemolition measurement

of the photon number of a physical system. Therefore we have found that

the general results obtained in this paper are valid for many kinds of quantum
measurement processes.
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