International Journal of Theoretical Physics, Vol. 37, No. 10, 1998

Information and Entropy in Quantum
Measurement Processes
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Quantum measurement processes of discrete and continuous observables are
considered from the information-theoretic point of view. The information
extracted from the results of quantum measurement performed on a physical
system and the change of the Shannon entropy of the measured physical system
are investigated in detail. It is shown that the amount of information about the
intrinsic observable of the measured physical system can be expressed by the
mutual information between the physical system and the measurement apparatus
if the intrinsic observable commutes with the operational observable defined by
the quantum measurement process. Furthermore, the condition can be obtained
under which the amount of information extracted from the measurement outcomes
becomes equal to the decrease of the entropy of the measured physical system.
In addition, the change of the Shannon entropy is compared with that of the von
Neumann entropy. The general results do not depend on whether the readout of
the measurement outcome obeys the projection postulate or not. Several examples
of quantum measurement processes are considered to examine the general results.

1. INTRODUCTION

The entropy of a physical system is one of the most important quantities
in thermodynamics and statistical mechanics (Mayer and Mayer, 1977). For
example, the second law of thermodynamics is formulated in terms of entropy.
In thermal equilibrium, the entropy of a macroscopic system is obtained by
the Boltzmann formula. Let W be the number of microscopic states of the
system that are macroscopically equivalent in thermal equilibrium. Then the
Boltzmann formula tells us that the entropy H of the system is given by
H = In W, where we set the Boltzmann constant kg = 1. To rewrite the
Boltzmann formula, let p; be the probability that the jth microscopic state
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appears in thermal equilibrium. The principle of equal a priori probabilities
says that all the probabilities are equal, that is, p; = I/W for all j (Mayer
and Mayer, 1977). Hence the entropy in thermal equilibrium can be expressed
in the form H = —X%; p; In p;. Conversely, when we define the entropy by
this formula, the thermal equilibrium state is obtained by applying the entropy-
maximum principle (Jaynes, 1957a, b).

The relation between entropy and information was considered first by
Szilard (1929), who showed that the information gain by the measurement
of the thermodynamic system decreases the entropy of the measured system.
Of course, the total entropy of the measured system and the measurement
apparatus increases, which is the second law of thermodynamics. The impor-
tance of Szilard’s work was pointed out by Brillouin (1956), while Szilard’s
work was criticized by Jauch and Baron (1972). The most important and
interesting work to understand the relation between entropy and information
was done by Shannon (1948a, b; Shannon and Weaver, 1949) who introduced
the entropy, called the Shannon entropy, into communications theory. He
showed the source-coding theorem and the channel-coding theorem: The
former says that the average length of a code word representing a symbol
generated from a message source is lower bounded by the Shannon entropy
of the message source; the latter ensures that the information can be reliably
transmitted through a noisy channel if the information rate is less than the
channel capacity, which is the maximum value of the mutual information of
the communication channel. The work by Szilard (1929), Brillouin (1956),
and Shannon (1948a, b; Shannon and Weaver, 1949) treated classical systems.
Other interesting work on the relations among entropy, information, and
randomness of physical systems includes that by Zurek (1989) and Caves
(1993).

Quantum mechanical entropy was introduced by von Neumann in the
quantum theory of measurement (von Neumann, 1955). Let p be a statistical
operator which describes the quantum state of a physical system. Then the
quantum mechanical entropy S(p), called the von Neumann entropy, is given
by S(p) = —Tr[p In p], where Tr stands for the trace operation over the
Hilbert space on which the statistical operator p is defined. When a physical
system is prepared in the quantum state p, an observable A of the physical
system, which has the eigenstate Wi(a)) with eigenvalue a, takes the value a
with probability p4(a)= (U(a)lpl(a)). In this case, the Shannon entropy of
the observable A is given by H(p4) = —Zq p(a) In p(a), which is no less
than the von Neumann entropy S(p), namely, S(p) = H(p.), where the
entropy H(p.) is referred to as the measurement entropy in some cases
(Ballan et al., 1986). The properties of the von Neumann entropy in quantum
measurement processes have been investigated by several authors (Groene-
wold, 1971; Lindblad, 1973; Ozawa, 1986).
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It has recently been found that the von Neumann entropy in quantum
information theory (Belavkin et al., 1995; Hirota et al., 1997) plays the same
role as the Shannon entropy does in classical information theory (Cover and
Thomas, 1991). In fact, the two quantum coding theorems have been proven
in terms of the von Neumann entropy (Schumacher, 1995; Jozsa and Schu-
macher, 1994; Schumacher and Westmoreland, 1997; Holevo, 1998). The
quantum source-coding theorem says that the average number of quantum
bits (qubits) representing a pure quantum state generated from a quantum
message source is lower bounded by the von Neumann entropy of the source
(Schumacher, 1995; Jozsa and Schumacher, 1994), and the quantum channel-
coding theorem ensures that the information can be reliably transmitted
through a noisy quantum channel if the information rate is less than the
channel capacity, called the Holevo bound (Holevo, 1973), which is calculated
in terms of the von Neumann entropy (Schumacher and Westmoreland, 1997;
Holevo, 1998). Quantum information theory, which includes quantum com-
puting, quantum coding, and quantum cryptography, is one of the most
important subjects in present-day quantum physics and information science
(Belavkin et al., 1995; Hirota et al., 1997).

When quantum measurement is performed on a physical system, the
quantum state of the measured system inevitably changes due to the effects
of the quantum measurement process. Any quantum measurement process
that does not disturb the quantum state gives us no information about the
measured system. The state change of the measured system induces a change
of the Shannon entropy (or the measurement entropy) of the system. Thus
it is clear that any quantum measurement process in which the entropy of
the system remains unchanged does not give us any information about the
system. Therefore it is important to investigate the relation between the
amount of information about the physical system extracted from the measure-
ment outcomes and the entropy change of the measured physical system.
This is the main subject of this paper. In particular, we would like to obtain
the condition for quantum measurement processes under which the amount
of information extracted from the measurement outcomes is equal to the
decrease of the entropy of the measured physical system. Furthermore, we
consider several models of quantum measurement processes to examine the
general results.

This paper is organized as follows. In Section 2 we briefly review the
basic elements of the quantum theory of measurement in a suitable way for
our purpose, and then we introduce probability distributions in a quantum
measurement process. In Section 3 we consider the information about the
measured physical system that is extracted from measurement outcomes, and
we find the condition under which the amount of information about the
physical system can be expressed by the mutual information between the
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physical system and the measurement apparatus. The condition is equivalent
to the commutativity of the intrinsic observable of the measured system and
the operational observable defined by the quantum measurement process. In
Section 4 we investigate the entropy change of the physical system caused
by the quantum measurement process. We obtain the condition under which
the amount of information extracted from the measurement outcomes becomes
equal to the entropy decrease of the measured physical system. Furthermore,
we compare the change of the Shannon entropy with that of the von Neumann
entropy in the quantum measurement process. In Section 5 we consider the
several examples of quantum measurement processes to examine the general
results obtained in Sections 3 and 4. We investigate the normal unitary process
and the SU(2) and SU(1, 1) processes in quantum optical systems. In Section
6 we consider the entropy change and the information gain in quantum
measurement processes of continuous observables. We can obtain the same
results as those for quantum measurement processes of discrete observables.
As examples, we investigate position and momentum measurements of a
physical system in one-dimensional space. In Section 7 we consider continu-
ous quantum measurements, such as the photon counting measurement, to
obtain information about a physical system. As an example, we investigate the
degenerate four-wave mixing process with the photon counting measurement,
which is equivalent to the continuous quantum nondemolition measurement
of the photon number of a physical system. In Section 8§ we summarize
the results.

2. QUANTUM MEASUREMENT PROCESSES

In this section we briefly summarize the basic formulation of quantum
measurement processes in a suitable way for our purpose (Busch ez al., 1991,
1995; Kraus, 1983), and then we introduce probability distributions that an
observable takes some values in the premeasurement and postmeasurement
quantum states, by means of which the Shannon entropies are calculated
(Shannon, 1948a, b; Shannon and Weaver, 1949). Suppose that we perform
quantum measurement on a physical system & to obtain some information
about an observable XS ina quantum state which is described by a statistical
operator pm which satisfies pi, = 0 and Trspln = 1, where Trs stands for the
trace operation over the Hilbert space #s of the physical system. We assume
that the measured observable 5(5 of the physical system has a spectral decom-
position given by

Ys = | | = £ 2.1
Xs u;A’H‘J/s(H)X‘J/s(H) u;ﬂu (1) (2.1)

where Jl represents the spectral set of the observable 5(5 and E(u) is a
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projection operator onto the one-dimensional eigenspace of 5(5. In equation
(2.1) we have assumed that the observable 5(5 has nondegenerate and discrete
eigenvalues, for the sake of simplicity. The set of the eigenstates Sy =
{Ws(u))ln € M} becomes a complete orthonormal system of the Hilbert
space J€s, which satisfies the relations

Ws(r)Ws(12)) = Oy s ZAA IWs(p) X Ws(w)l = s (2.2)
ueht

where I stands for an identity operator defined on the Hilbert space ¥s.

To measure the observable 3(5, we first have to prepare a measurement
apparatus_ &4 the initial quantum state of which is described by a statistical
operator pin. We denote the Hilbert space of the measurement apparatus as
4. We next have the measurement apparatus interact with the physical
system to make some quantum correlation between them, which is indispens-
able for obtaining information about the physical system by means of the
measurement apparatus. Let AUs4 be a unitary operator that describes the state
change of the physical system and the measurement apparatus caused by the
interaction. If the interaction is represented by a Hamiltonian Hy and the
interaction time is T, the unitary operator s, is given by

AUsy = exp ( L -1 A) (2.3)

After the interaction, the compound quantum state of the physical system
and measurement apparatus becomes

poa = Wsa(pf X pib) UL (2.4)

In this paper we ignore the individual time evolutions of the physical system
and the measurement apparatus, for the sake of simplicity, since they do not
affect our results.

We finally perform the readout of the result of the quantum measurement
process. The readout of the measurement outcome is mathematically described
by a positive operator-valued measure (POVM) defined on the Hilbert space
€4 (Davies, 1976; Helstrom, 1976; Holevo, 1982). The readout which gives
the output value v is described by the POVM E4(v), which satisfies the
relations

Ed(v) = 0, Z Ed(v) = I (2.5)
veN

where 7, is an identity operator defined on the Hilbert space #,, and N
represents the set of all possible outcomes of the quantum measurement
process. If the measurement outcome Vv corresponds to the value of some
observable Y4 of the measurement apparatus, the POVM E%(v) becomes a
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projection operator E4(v) = |¢ (v))(d) (V)|, where |p4(Vv)) is the eigenstate
of the observable Y4 = Zyeyv Ef(V), which is called the pointer observable.
The set {1 4(v))lv € N} is referred to as the pointer base. It should be noted
that even if the readout of the measurement outcome cannot be performed
by measuring any pointer observable ¥ 4, the results obtained in this paper
are still valid since we use only relations (2.2) and (2.5) to derive the results.
The photon counting measurement, which is a continuous quantum measure-
ment of photon number (Srinivas and Davies, 1981; Srinivas, 1996; Chmara,
1987), is a typical example that there is not a pointer observable (see Sec-
tion 7).

When the measurement outcome Vv of the quantum measurement process
is given, the quantum state of the physical system after the measurement is
obtained from (2.4) by means of the state-reduction formula (Kraus, 1983;
Ozawa, 1983, 1984)

Tr (s X EW(V))pout]
Trsal(Is ® Ef(v)pSi]

Pou(V) = (2.6)

where Tr, and Trsy stand for the trace operations over the Hilbert spaces # 4
and ¥, = #Hs X 4. We refer to the quantum state f)(s)m(v) as the postmeasure-
ment state of the physical system. The probability P £,(v) that we obtain the
measurement outcome V is calculated by

P (V) = Trsd (Is & E4(v))pSa] (2.7)

where equation (2.5) ensures that P a(V) is nonnegative and normalized as
Svex Pdu(v) = 1. In the postmeasurement state Pou(V) of the physical system,
the observable s takes the value u with probability

Piu(plv) = Trs[ E5(L)pou(V)] (2.8)

which is conditioned by the measurement outcome v. When we do not perform
the readout of the measurement outcome Vv, the postmeasurement state Py
of the physical system becomes

Pou = Trapdli (2.9)
in which the observable 5(5 takes the value p with probability
Pou(p) = Tl E5(P3] = Trsal(By() X Lopail - (2.10)

The quantum measurement in which we do (do not) perform the readout of
the measurement outcome V is called the selective (nonselective) quantum
measurement.
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There are several relations among the probabilities. We first obtain from
equations (2.7), (2.8), and (2.10)

Poa) = 3, PRa(uv)Piu(v) (2.11)

Note that we can define the joint probability in the compound quantum state
Do of the physical system and the measurement apparatus,

Py, v) = Trsa(E(n) X Ed(v)piil (2.12)
Then we obtain the relations among the probabilities
out(Ha V) Pgut(H|V) Pgut(v) (213)

Pi(p) = ¥ Poi(u, v),  Pow(v) = (L, 2.14
(1) ; (1, v) (v) H;M W, v) o (2.14)

According to the Bayes theorem (Caves and Drummond, 1994), we obtain
the posterior probability P au(VILL),

Pgut(w}l) _ out(H, V) out HlV) Pout(V) (215)

out(H) Pout(H)
Using these probabilities, we can calculate the Shannon entropies in the
quantum measurement process.

The quantum measurement process performed on a physical system is
completely determined by the triplet Ml = (pm, E4(V), WUs,). Thus far we have
not restricted the initial quantum state pln of the measurement apparatus, the
readout process described by the POVM E%(V), or the interaction between
the physical system and the measurement apparatus given by the unitary
operator Alsy. The triplet M = (pfh, E4(V), Us,4) is usually determined so as
to satisfy the probability reproducibility condition (Busch et al., 1991, 1995)
given by the relation

Pi(p) = Pou(V), B =f(V) (2.16)

where P$,(n) represents the probablllty that the observable XS takes the value
W in the premeasurement state pi, of the physical system,

Pi(1) = Trs Ey(w)ph] (2.17)

and f(v) is some analytic function which connects the measurement outcome
v with the value p taken by the observable ys of the physical system. In this
paper, however, we do not impose the probability reproducibility condition
on quantum measurement processes and we will consider the information
and the entropy change in a quantum measurement process characterized by
an arbitrary triplet M = (pfh, E4(v), Us.a).
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Fig. 1. Schematic representation of the quantum measurement process.

Before closing this section, we summarize the notation used throughout
this paper. In the premeasurement state ;A),Sn of the physical system, the observ-
able 5(5 takes the value p with the probability Pi(p). This defines the random
variable X%, in the premeasurement state of the physical system. In the same
way we can define the random variable X35, in the postmeasurement state
of the physical system. Since the measurement outcome v of the quantum
measurement process is governed by the probability P&(v), we can define
the random variable Y&y in the output state of the measurement apparatus.
We can also introduce the random variable Y{i in the initial state of the
measurement apparatus. The quantum measurement process that we consider
is schematically shown in Fig. 1 in terms of these random variables. Using
the probabilities introduced above, we can calculate the Shannon entropies
(or the measurement entropies) (Cover and Thomas, 1991) in the quantum
measurement process,

H(X) = — ZA PH(n) In Pi(p) (2.18)
wen
H(Xow) = — 3 Pou(i) In Pou(p) (2.19)
weu
HY o) = — P{)‘m(v) In P (V) (2.20)
ve/
H(Xouw, You) = — > Poi(p, V) In Poi(u, V) (2.21)
ned &N
Furthermore, the conditional entropies are given by
HXS Y4 = — Au, v) In PS(ulv 2.22
(XowlY Su) u;/t,v% ot(H ) out(11v) ( )

H(Yout out = ;/1 ; Pout(“n V) ln Pout(V“*L) (223)
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The well-known relations among the entropies are obtained from (2.15),
H(Xow, Youw) = H(XoulY &) + H(Y &)
= H(Y 3l Xow) + H(Xow) (2.24)
The mutual information H(Xau; Y aw) is calculated by
H(Xcs)ut; Yiw = H(Xgut - H(X(S;ut|Ygut
= H(Xow) + HY 4w) — H(Xow, Yéu
= H(Yow) — H(Y ful Xou (2.25)

Note that the Shannon mutual information is symmetric with respect to the
random variables, that is, H (X SuYa) =H Y 4 X5u). These entropies are

used to investigate the entropy change of the physical system in the quantum
measurement process.

3. INFORMATION GAIN IN QUANTUM MEASUREMENT
PROCESSES

We now consider the amount of information which can be extracted
from the results of the quantum measurement process about the observable
%s of the physical system in the quantum state ;A),Sn For this purpose, we first
investigate the output probability P au(V) of the measurement apparatus. Sub-
stituting (2.4) into (2.7), we obtain

Pau(v) = Trsal(fs ® E4(v)Usa(plh X pib)lUda]
= Trs[Wha(s R E4(V))Usa(pia X pit)]
= Try[Ts(v)pSi] 3.1)
where the operator [1s(v) of the physical system is given by
[Is(v) = TrfMU(fs ® E4(v)Usa(ls X pih)] (3.2)

Using the properties of the POVM E4(v) of the measurement apparatus, it
is easily seen that the operator IIg(v) becomes the POVM of the physical
system, which satisfies the relations

[Is(v) = 0, Z [Isv) = s (3.3)
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Furthermore, using the completeness relation of the eigenstate Ws(n))y of the
observable s, we can calculate (3.1) as follows:

Py = 3 Us() TTs(v)phlvis())
peu

DD (TS s ) IPSIs(p))
ue

‘W e

) Urs() T (YU IPEIWs()) + R(v)  (3.4)
pen

where the quantity R(v) is given by
Rv) = I AWy Wsr)Iphs(w)y (3.5

pell, p'elt
(n#p')

It should be noted that the first term on the right-hand side of equation (3.4)
includes only the diagonal elements with respect to the eigenstates of the
observable 5(5, while the second term includes only the off-diagonal elements.

If we can prepare the physical system in one of the eigenstates of the
observable ¥s, e.g., pin = Wis(1)) (Us()l, the output probability of the mea-
surement apparatus becomes

Psa(vip) = Ws(u)l TIs(v)is(p)) (3.6)

This indicates that when we repeatedly perform the quantum measurement
on identically prepared physical systems, we can obtain the probabilities
Pou(v) and Ps4(vIp) from the measurement outcomes. On the other hand,
the quantity R (v) cannot be determined by the quantum measurement process
characterized by the triplet M = (bﬁl, E4(v),Us,). Therefore we assume that
the quantum measurement process satisfies the relation (Fine, 1969)

s sy =0 (u # ') (3.7)

The physical meaning of this relation will be considered later.

When the quantum measurement process M = (f)A ins E9(V), WUs,) satis-
fies relation (3.7), the output probability P&, (V) of the measurement appara-
tus becomes

Pan(v) = % Psa(VIL) PH(p) (3.8)
pen

where Ps4(vIp) is given by equation (3.6). Since the operator ﬂs(v) is the
POVM of the physical system, Ps4(VIQ) satisfies the relations

PsaVip) =0, 3 Ps(vip) = 1 (3.9)

It is easy to see from equations (3.8) and (3.9) that Ps4(VIW) represents
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the conditional probability that the measurement outcome of the quantum
measurement process is given by the value v when the observable 5(5 takes
the value Y in the premeasurement state f)ﬁl of the physical system. According
to the Bayes theorem (Caves and Drummond, 1994), we obtain the joint
probability Psu(Vv, W) and the posterior probability Pss(plv) in the quantum
measurement process,

S

Pas(ulv) = MV;'%MM (3.10)
out(v)

Psa(V, 1) = Psa(VIL)Pin() = Pas(IV)P u(V) (3.11)

It can be considered that the information about the observable 5(5 of
the physical system which is extracted from the measurement outcomes is
equivalent to the information transmitted from the physical system in the
premeasurement state to the measurement apparatus in the output state. This
means that the quantum measurement process characterized by the triplet
M = (pd, E4(v), Us4) defines a communication channel between the mea-
sured physical system and the measurement apparatus. Therefore we can
express the amount of information about the observable ys of the physical
system extracted from the measurement outcomes by the mutual information
between the physical system and the measurement apparatus,

I(Yow: Xin) = H(Xi) — HXRIY G
= H(X%) + HY 4) — H(Y bu, X
= H(Ygut - H(Ygut|X§1
= I(Xi; Y (3.12)

where the entropies H(X%,) and H(Y{,) are given by equations (2.18) and
(2.20), and the joint entropy H(Y & X3) and the conditional entropies
H(X3Y 8w) and H(Y 8 X35) are given respectively by

H Y() N Xin P V, lll P V, 3. 13
( ut ) E ’ E ‘" SA( H) SA( H) ( )
H Xin|Y0 P V, lllP |V 3.14
( 11) E ’ E ‘" SA( H) AS(PL ) ( )
H Y() |Xin E E P V, H lllP V“,L 315
( t ) ’ X SA( ) SA( ) ( )

Because of equations (3.10) and (3.11), these entropies satisfy the relation
H(Yow, X) = H(Yow) + H(X2lY 5
= H(Xi) + HY sl Xt (3.16)
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Comparing equation (2.16) with equation (3.8) and using equations (3.12)—
(3.15), we find that under our assumption [see (3.7)], the probability reproduc-
ibility condition is equivalent to the entropic relation given by H(XulY &) =
H(Y{fleiSn) = 0, or equivalently I(Y{fm; X5 = H(Xisn = H(Y{)’m). In Section
4 the information gain /(Y 4o X isn) is compared with the entropy decrease of
the physical system caused by the quantum measurement process.

We now consider the physical meaning of relation (3.7). Since the
relation indicates that the operators IIs(v) and Ej(p) are simultaneously
diagonalized, we obtain the commutation relation

[LLs(v), Ex(w)] =0 (3.17)
Here let us introduce an operator 5(§p(n) of the physical system,

W = 3 vIIv)
= Tr [ Uka(Ls R Y 4(n))Us.a(ls X FA)i/:l)] (3.18)

where the operator Y 4(n) of the measurement apparatus is given by

Yu(n) = Z V'EX(V) (3.19)

When E(v) is a projection operator | 4(v)}¢4V)| onto the eigenspace of
the pointer observable, we have M 4(n) = ¥%, where ¥, = Zyex VID4AV))
($ 4(v)| is the spectral decomposition of the pointer observable of the measure-
ment apparatus. It should be noted that the operator ¥s°(n) depends only on
the quantum measurement process characterized by the triplet M =
(f)ﬁl, E4(v),Alsy), but is independent of the observable 5(5 of the measured
physical system. Hence the operator 5(? (n) is called the operational observable
(Englert and Wodkiewicz, 1995; Banaszek and Wodkiewicz, 1997; Ban,
1997¢), which is not a Hermitian operator in general, while the Hermitian
operator 5(5 is called the intrinsic observable of the physical system and is
independent of the quantum measurement process. The operational observable
is also referred to as the fuzzy observable or the unsharp observable (Busch
etal., 1995; Prugovecki, 1976a, b). Using the intrinsic and operational observ-
ables, relation (3.17) can be expressed as

[, xP(m)] =0 (3.20)

The condition represented by (3.7) is equivalent to the commutativity of the
intrinsic and operational observables in the quantum measurement process.
Therefore we can summarize the result in the following form.

Theorem 3.1. If the operational observable §(§p(n) defined by the quantum
measurement process M = (pfh, E4(v),s4) commutes with the intrinsic
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observable 5(5 of the physical system, the amount of information
I(Y &u; X3 about the intrinsic observable ys extracted from the measurement
outcomes can be given by the mutual information,

PSA! vl H)
Péut(v)

where the probabilities P au(V), P3u(1), and Ps4(VIp) are given respectively
by equations (2.7), (2.17), and (3.6).

I(Yae X3) = Ps (Vi) P(w) 1 3.21
( ) H;A v;" sa(VIL) Pin(1) In (3.21)

Next let us rewrite the condition given by (3.17) or (3.20) into another
form which is used in Sections 4 and 5. Using the completeness relation of
the eigenstate [Ws(p1)) of the observable Y5, we can express the unitary operator

OTLSA as

A | S H L A H, H S H | 3.22
GILE — | lr , ’ ’ | 323
A HE H,EE_ ‘JIS (H)> (H H )(‘JIS(H ) ( )

where the operators U4(u, p') and Ul(p, p') of the measurement apparatus
are given by

Ua(p, 1) = (Ws(p)MUsalis(pn)) (3.24)
Ul(p, 1) = Ws(p)1UbalVis(p')) (3.25)
Since the operator 9ls, is unitary, these operators satisfy the relation
3, Ut w U, w) = 8 O, w0 ) = Suweds (3.26)
When we substitute equations (3.22) and (3.23) into equation (3.2), the POVM

Hg(v) of the physical system is expressed as
[s(v)

= ZA > Z is(r)) TralUli(p, p)ESWU AR, wpalWs(u)l (3.27)
=

HEM puE

Therefore it is found from this equation that the condition given by (3.17)
or (3.20) can be stated in the following form.

Condition 3.1. The quantum measurement process which is characterized
by the triplet M = (pfi, E4(V), As4) satisfies the relation

3, Tl Uk, wOES U, 0)pi]
pwem

= S ém TrfUl(p, p)ES(V) U, w)pil (3.28)
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When this condition is satisfied, the POVM ﬂs(V) of the physical system
and the conditional probability Ps4(vIp) in the quantum measurement process
are expressed as

Ms(v) = Ws(1)) Tra Ul(p, w)ES(V) Ui, pial(Us(u)l - (3.29)
pem pem

PsaVIw) = > Tra Uh(u, ) ESV) U, wpi] (3.30)
pem

In Sections 4, 5, and 7, we will use equations (3.28)—(3.30) to investigate
the relation between the information gain and the entropy change in the
quantum measurement process.

4. ENTROPY CHANGE OF A PHYSICAL SYSTEM

In this section we investigate the decrease of the Shannon entropy of a
physical system in the quantum measurement process characterized by the
triplet M = (;A)m, E4(v), As4). When the outcome v of the quantum measure-
ment process is obtained, the probability Pom(plv) that the observable XS
takes the value L in the postmeasurement state pom(v) of the physical system
is given by (2.8). The measurement outcome V is obtained with the probability
P &4(v). Thus the entropy of the physical system in the postmeasurement state
is given by

H(Xout out - — ; ;A Pgut(V)Pgm(H|V) ln Pgm(},LW) (41)
==l

Then the decrease of the entropy of the physical system that is caused by
the quantum measurement process is calculated by

AH (XS, X5V 4D = HXS) — HXS.Y )
=HXh) + HYA) — HXow, Yo (4.2)

where the entropies H (X ), H(Y Om) and H (X outs ¥ Om) are given respectively
by equations (2.18), (2.20), and (2.21). Using (2.12), (3.22), and (3.23), we
can calculate the joint probability Pa(u,V) as follows:

PSi(v) = Trsa(E5(p) X E5(v)Usa(pf X pib) U]
= TrUs(W)l(Is ® E5(v)Usa(pf X pit)ULaWs(w))
=3 3 TrfUl(p', WES(V) Ui, n)pals(n)phivs(n’))
pel ne
(4.3)

To proceed further, we impose the following condition on the quantum
measurement process M = (pif, E4(V), Us.).
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Condition 4.1. The quantum measurement process which is characterized
by the triplet M = (pfh, E4(V), WUs,) satisfies the relation

Tra Ui, p)ES(UAR', p)pi]
= 8w TralUl(p, W)W U AR, ppial (4.4)

It is easy to see that this condition is stronger than Condition 3.1. In
fact, when Condition 4.1 is satisfied by the quantum measurement process,
Condition 3.1 is always fulfilled. Under Condition 4.1, the joint probability
P54 (u, v) becomes

PR, V) = 3 TrdUMW, WESWUAR, wOPRIPA(R)  (4.5)
13 L
Here we further impose the following condition on the quantum measure-
ment process.

Condition 4.2. The quantum measurement process which is characterized
by the triplet M = (pff, E4(v),Us,) satisfies the relation

Tra Ui, wESWUAR, n)pi]
= Sy v TraL UM/ (15 V), L) ES(W UL, f(1; V)Pl (4.6)

where f(lt; v) € JL is a function of p that in general depends on the outcome
v of the quantum measurement process.

Furthermore, if f(i; v) # W, we introduce the following condition.

Condition 4.3. The conditional probabilityAPSA(vl W) given by (3.6) or
(3.30) and the spectral set Jl of the observable ys satisfy the relation

ZA Psa(VIf(u; VF(f(n; v) = ZA Psa(VIW)F() (4.7)
=l =l

for any nonsingular function F(p).

Using equations (3.24) and (3.25), we find that Conditions 4.1 and 4.2
can be unified in the following relation:

Tr[US(Ex(p) X EGW)Usa(ls X Pi)] = Poa(VIf (w; VIEL(S (15 V) (4.8)

When the quantum measurement process satisfies Conditions 4.1-4.3,
we can obtain the joint probability from (4.5),

Paa(, V) = Psa(VIf (1 V)P (f(15 V) (4.9)
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where we have used the fact that under Condition 4.2, the conditional probabil-
ity Ps4(vIn) given by (3.30) becomes

Psa(VIp) = Tra Uk, £~ (0 V) ESO)ULS ™ (15 V), W) pis] (4.10)

where /™' (u; V) is an inverse of the function f(u; v). In addition, if the
function f(u; v) does not depend on the measurement outcome v, namely
f(u; v) = f(n), taking the summation of (4.9) with respect to v yields
the equality

Pou(p) = P (f(L) (4.11)

where the probability Poy(l) is given by equation (2. 10) We have found
that under Conditions 4.1—4.3, the joint probability P34 (W, V) is greatly
simplified. We will see that there are many quantum measurement processes
that satisfy these conditions (see Sections 5-7).

Finally when the quantum measurement process satisfies Conditions
4.1-4.3, we can obtain the decrease of the entropy AH (X5, XinlY &) of the
physical system in the quantum measurement process,

AH(X3u, XanlY G
= H(X%) + H(Y §u) + u;A V;ﬂ Psa(1, V) In Psy(1t, V)
= H(X%) + H(Yow)
3 5 PO V) PG V) I Pa(VIF (s WP (fs )
= H(Xh) + HY Gu) + ;M’ ; Psa(VIL) Pia(1) In[ Psa(VIL) Pin(w)]
= H(Y&w) + % Z Ps(vIp) P(p) In Psa(vip)

HEM Ve

= H(Yow) — HY Jul X3 (4.12)

Comparing this result with equation (3.12), we find that the entropy decrease
of the physical system caused by the quantum measurement process is equal
to the amount of information about the observable 3(5 of the physical system
that can be extracted from the measurement outcomes. Thus we obtain the
equality

I(Youw; Xin) = AH(Xow, XinlY 8w (4.13)
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Furthermore, substituting (3.12) and (4.2) into this equation, we obtain the
relation between the conditional entropies,

HXAY 8w) = H(XoulY 5w) (4.14)

This result indicates that when we obtain the measurement outcome, the
uncertainty of the observable 5(5 in the premeasurement state of the physical
system is equal to that in the postmeasurement state. Therefore we can
summarize the results in the following theorem.

Theorem 4.1. When the quantum measurement process M =
(f)ﬁl, E4(v), Us,) satisfies Conditions 4.1-4.3, the entropy decrease of the
physical system is equal to the amount of information extracted from the
measurement outcomes,

I(Y 5w X)) = AH (X0, XaalY G
In this case, the the equality H(X5|Y &) = H(X5.Y &) is also established,
which indicates that although the quantum state of the physical system changes
due to the quantum measurement process, the uncertainty of the observable

¥s in the premeasurement state is equal to that in the postmeasurement state
when the measurement outcome is obtained.

It is important to note that Conditions 4.1-4.3 are sufficient, but not
necessary, for this theorem to be established.

Before closing this section, we compare the change of the Shannon
entropy with that of the von Neumann entropy in the quantum measurement
process M = (f)ﬁl, E4(v), WUs.). Suppose that the premeasurement state ;A),Sn of
the physical system is prepared in the statistical mixture of the eigenstates
of the observable 3(5 which is given by

o = E%P%QOWiM»Nku0| (4.15)
pem

In this case, the von Neumann entropy S(X3) and the Shannon entropy
H(X%) of the premeasurement state of the physical system are equal,

S(XS) = —Trs[ph In Pfi]
= - % Pi(n) In Pi(p) = H(X5 (4.16)
pen

On the other hand, in the postmeasurement state of the physical system, the
von Neumann entropy is calculated to be

SXoulY 8w == 3 Pau(WTrs pu(V) In plu(V)]
veN

<- fmw%WMMMwwmmwmmmwwm>
VEN peu
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= & P(v) 3, (Trsl £ (P (VD In (Trs £(P3u(V)D

= - ZA out(V)Pout H'V) lnP()m H'V)

veN pe
= H(Xout out (4 17)
where we have used the concavity of the entropic function [ f(x) = —x In

x] (Wehrl, 1987) or Jensen’s inequality in information theory (Cover and
Thomas, 1991). Using (4.16) and (4.17), we obtain the relation for the decrease
of the von Neumann entropy

AS (X, XY = S(X) — S(XoulY &)
= H(Xm - H(X0u1|Y0ut)
= AH(X3u, XulY du (4.18)

Thus when the premeasurement state of the physical system is given by
equation (4.15), the decrease of the von Neumann entropy is no less than
that of the Shannon entropy.

We next consider the case that the postmeasurement state f)(s)m(v) of the
physical system is the statistical mixture of the eigenstates of the observ-
able s,

Pou(V) = ZA P (V) Wis ()Y W) (4.19)
ye

Then it is easily seen that the following equality holds:
S(XouwlYow) = H(XowlY ou (4.20)

Since the inequality S(X3) < H (X3,) is satisfied in general, the decrease of
the von Neumann entropy is no greater than that of the Shannon entropy,

AS (Xou, XlY o) < AH (Xouw, XY o (4.21)
Therefore we can summarize the result in the following theorem.

Theorem 4.2. The decreases of the Shannon entropy and the von Neu-
mann entropy of the physical system in the quantum measurement processes
M = (pi, E4(v), Us,) satisfy the inequalities

AH(XS,, X5IY 4D < AS(X3w, XY 4, for [Xs, Pl =0  (4.22)
AH(X3w, XY &) = AS(X3uw, X3lY4) for [xs, pou(V)] =0 (4.23)

where the equality holds for [5(5, f),sn] = [5(5, ;A)(S)ut(v)] = 0.
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We finally note that the change of the von Neumann entropy in the
quantum measurement process has been investigated in detail by several
authors (Groenewold, 1971; Lindblad, 1973; Ozawa, 1986).

5. EXAMPLES OF QUANTUM MEASUREMENT PROCESSES

In this section we consider several examples of quantum measurement
processes to examine the general results obtained in Sections 3 and 4. In
particular, we pay attention to whether Conditions 4.1-4.3 are satisfied or
not by the quantum measurement processes and to whether the equality
between the entropy decrease of the physical system and the amount of the
information extracted from the measurement outcomes is established or not.
The examples considered here include the normal unitary process (Beltrametti
et al., 1989) and the SU(2) and SU(1, 1) processes with photon number
measurement (Ban, 1996a).

5.1. Normal Unitary Process

We first consider the normal unitary process (Beltrametti et al., 1989)
by means of which we obtain the information about the observable ¥s of the
physical system in the quantum state pf,. The normal unitary process which
is characterized by the triplet M = (f)ﬁl, E4(v), WUsy is set up in the follow-
ing way.

1. The measurement apparatus is prepared in a pure quantum state
|p#) before the interaction with the physical system. Thus we have
A — A A
pin - |¢in><¢in|o

2. The readout of the measurement outcome is performed by measuring
a pointer observable %4 which corresponds to the same physical
quantity as that represented by the intrinsic observable ys of the
physical system, that is, ¥, = .. In this case we have N = JL.
When we denote the eigenstate of the pointer observable ¥, as
|p 4(v)), the POVM E4(v) of the measurement apparatus becomes
the projection operator E4(v) = 1 4(V)XPAV)I.

3. The unitary operator Alss which describes the state change caused
by the interaction between the physical system and the measurement
apparatus is defined by the relation

Wsa(Wrs()) X 10y = Wis(p)y X 1 a(p)) (5.1)

where Wg(1t)) is the eigenstate of the observable ¥s and [s(p)) is
some quantum state of the physical system that is a nonorthogona 1
state in general.
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In this measurement process the compound quantum state of the physical
system and the measurement apparatus after the interaction becomes

PR = Z Ws(IPRIUs( NI R 10X DA (5.2)
L pem

The postmeasurement state f)(s)m(v) of the physical system after the measure-
ment outcome Vv was obtained and the probability P{)’m(v) of the measurement
outcome V are calculated from (2.6), (2.7), and (5.2),

Pou(v) = Nis(V))(Us(v)! (5.3)
Paa(v) = Us(VIpRIVs(v)) = P(v) (5.4)

It is clear from equation (5.4) that the normal unitary process satisfies the
probability reproducibility condition. Furthermore, (5.4) shows that the condi-
tional probability Ps4(vIp) and the posterior probability Ps4(plv) are given by

Psa(vIp) = Pas(ulv) = Ouv (5.5)

which indicates that H(X5lY &) = H(Y &xlX5) = 0. Thus the amount of
information obtained from the measurement outcomes is equal to the entropies
of the premeasurement state of the physical system and of the output state
of the measurement apparatus,

I(Youws Xin) = H(X%) = H(Y Ju (5.6)

It is seen from the definition (5.1) that the operators U4(u, 1') and
Ul(u, n') of the measurement apparatus [see (3.24) and (3.25)] satisfies
the relation

TraLUl(p1, w2) ES(V)Ua(ps, pa)pinl
= v, Oy (Us() Wrs(p2) X Wis(us) i)y (5.7)

which ensures that Conditions 3.1 and 4.1 are fulfilled. Then it is easy to
see from (3.29) and (3.30) that [Is(v) = is(v))(Ws(V)l and Psa(VIip) = 8y v
are obtained; which is consistent with (5.5). Thus the operational observable
%sp(l’l) defined by the normal unitary process [see (3.18)] is equal to the
intrinsic observable xg of the physwal system.

In the postmeasurement state pom(v) of the physical system, the observ-
able ys takes the value p with probability P3u(plv) = [(Us(u)Ws(v))I>. Then
the entropy decrease of the physical system in the normal unitary process is
obtained from (4.2),

AH (X3, XY oue

= H(XhH) + ZA ZA PaWIUs( W) InlUs()i(v)I? - (5.8)
pen veu
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Furthermore it is seen from equation (5.7) that Condition 4.2 is satisfied if
and only if the quantum state [\Jis()) of the physical system after the measure-
ment is one of the eigenstates of the observable s, that is, Iis(1)) = Wis(£()))
with f(p) € Jl. In this case, the second term on the right-hand side of (5.8)
vanishes and thus the entropy decrease of the physical system becomes equal
to the amount of information obtained in the normal unitary process,

AH (X5 XalYow) = I(Yow X)) = H(X%) = H(Y ou (5.9)

It is seen from equations (4.6), (5.7), and (5.8) that Condition 4.2 is necessary
for the second term on the right-hand side of (5.8) to vanish. This means
that Condition 4.2 is necessary and sufficient for (5.9) to be established in
the normal unitary process. When the quantum state [is(p1)) is the eigenstate
of the observable 5(5, the normal unitary process is called the von Neumann—
Luders measurement (Busch et al., 1991). Therefore the normal unitary
process must be the von Neumann—Luders measurement for the amount of
information extracted from the measurement outcomes to equal the entropy
decrease of the physical system. Since we have [5(5, psu(v)] = 0 for the
normal unitary process of the von Neumann-Luders type, the decrease of
the Shannon entropy is no less than that of the vou Neumann entropy (sece
Theorem 4.2).

5.2. SU(2) and SU(1, 1) Processes

We next consider the SU(2) and SU(1, 1) processes in quantum optical
system, which are realized, respectively, by means of a lossless beam splitter
and a nondegenerate parametric amplifier, to obtain the information about
the photon number (s = abas [Esx(n) = Ings)(nsl] of the physical system, where
as and a§ are bosonic annihilation and creation operators and lng) is the
photon-number eigenstate (abaslnsy = nlns)). The quantum measurement pro-
cess which is characterized by the triplet M = (f)ﬁl, ES(n), Asy) is set up in
the following way.

1. The measurement apparatus is prepared in the vacuum state f)ﬁl =
104)(0 4| before the interaction with the physical system.

2. The readout of the measurement outcome is performed by measuring
the pointer observable of the measurement apparatus, that is, the
photon number operator, ¥ 4 = aha, where a4 and i are bosonic
annihilation and creation operators. Thus we have E%(n) =

ln {n4 and N = M = N, where |n,) is the eigenstate of the photon
number operator of the measurement apparatus (aldaln, =
nlng)) and N is the set of all nonnegative integers.

3. The unitary operator s, that describes the state change caused by
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the interaction between the physical system and the measurement
apparatus is given by

Mss = exp[—OS — o] for the SU(2) process (5.10)
Mss = exp[O(KE — K] for the SU(1, 1) process  (5.11)

where /2! and J§* are the generators of the SU(2) Lie algebra and
K%' and K3 are the generators of the SU(1, 1) Lie algebra,

A~

~ A 2 i 1 7 !
S =dbay , P'=asay, = 5 (abas — dlds) (5.12)

. “ , .o , | o
K = 4 aL, B = qay, K= E(alﬂg + dha, + ) (5.13)

which satisfy the SU(2) and SU(1, 1) Lie commutation relations,

L =203, LR A = (5.14)
[K¥, K¥] = 2K, [K$, K¥] = +RY (5.15)

In the following, we first consider the SU(2) process and then the
SU(1, 1) process.

5.2.1. SU(2) Process

In the SU(2) process, the compound quantum state of the physical system
and the measurement apparatus after the interaction is calculated from (2.4)
and (5.10) (Ban, 1994, 1996a),

o0 o0 1
54 — N
Pout = Zﬂ
o mZ:O n— m!n!

m+n__1/2

a§1 gl/ZaSaS pﬁl gl/ZaSaS asn ® |7"’IA>< nA'

T

(5.16)

where I = cos’0 and & = sin’0 are the transmittance and reflectance of
the lossless beam splitter. The quantum state f)(s)m(m) of the physical system
after the measurement outcome m was obtained and the probability
P &u(m) of the measurement outcome m are given respectively by

A 12dkac 1atde
a§19~/a5a5 pﬁlg/asas asm

m G124 b 12aldg A
Trs[ a§1 i Ragag pﬁl g agag asm]

Paulm) = 3 o — o T " nslpinlns) (5.18)

Pou(m) = (5.17)
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These results are equivalent to those obtained for the continuous measurement
of photon number that obeys the quantum Markov process (Ban, 1994). The
matrix element of the unitary operator As4 given by (5.10) is calculated to be

(I’I’l,q, I’ls|ous,4|l’l§, 0,4) = (mA|UA(n, I’l,)|0,4> = \/F(m, n’)8n,,,r7m (5.19)
with

!
F(m, n) = ——5—— qrgn—m (5.20)
m!(n — m)!

Using equation (5.19), we obtain the following relation:
Tra[Ul(n1, n2) E4(m)Us(ns, na)pia]
= \/F(I’I’l, I’ll)F(l’I’l, n4)8n2,n1*n18n3,n47m (521)

It is easy to see from this relation that Conditions 3.1 and 4.1-4.3 with
f(n; m) = n + m are fulfilled in the SU(2) process with the photon number
measurement. Therefore the entropy decrease of the physical system is equal
to the amount of information extracted from the measurement outcomes (see
Theorem 4.1).

Substituting equation (5.21) into equation (3.29), we obtain the POVM
Hg(m) of the physical system in the SU(2) process with the photon num-
ber measurement,

[Is(m) = 3, Fm mlnsynsl (5.22)

which indicates that the conditional probability is given by Ps(mln) =
(nslTIs(m)Insy = F (m, n). This is consistent with (5.18). Then the operational
observable ¥$°(m) of the system defined by the SU(2) process with the photon
number measurement is given by

NP(n) = z mTlym) = L G(6) (5.23)
o -

with
Ge() = [1 + R(et — 1)]°s (5.24)
In particular, we obtain for n = 1 and n = 2,
NP(1) = Ralas, NPQ2) = (Rabas)* + R(1 — R)abas (5.25)

which clearly shows that N¥(n) # [N$(1)]". It is obvious from equations
(5.23) and (5.24) that the operational observable N'$°(n) commutes with the
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intrinsic observable Ns = aas. Furthermore it is easily seen from (5.17)
that if the premeasurement state pm is diagonal with respect to the photon-
number eigenstate |ns), the postmeasurement state pom(m) of the physical
system is also diagonal. In this case, the decrease of the Shannon entropy
becomes equal to that of the von Neumann entropy (see Theorem 4.2).

Finally we show by explicit calculation the equality between the entropy
decrease of the physical system and the amount of information extracted
from the measurement outcomes. The amount of information obtained from
the results of the SU(2) process with the photon number measurement is
given by

out( )

where P3(n) = (I’ls|;)s|l’ls>. On the other hand, the entropy decrease in the
measurement process is given by

(Y 6w Xin) = ZQPSA(mln)Pm(n)l [M] (5.26)

AH(X5q, X5lYdo) = — Zﬂ P (n) In P(n)

+ Zﬂ Z Pom(m)(nslpom(m)lng) ln(nglpom(m)lng) (5.27)

Since from (5.17) we obtain

Ps (mln + m)Pi(n + m)
S o Psa(mln + m)Pi(n + m)

(I’ls|f)gu1(m) |I’ls> =

_ Psa(mln + m)Pii(n + m)
P(/?ut(m)

(5.28)

we can calculate the entropy decrease AH (X S Xy out) as follows:

©

AH(X35y, X5lYd) = — Pi(n) In Piy(n)

n=

© ©

Zﬂ Psa(mln + m)Pi(n + m)

m=0 n=

< In [PSA(mIn + m)P5(n + m):|

P gut(m)

= — Pisn(n) In Pisn(n)

n—=
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S
zﬂ Pou(mimP(n) In [u_u_zm )P ]
m=0 n— Pout(m)

” (mln)
- m=0 nzﬂ PSA(’"'”)Pm(”) In [ ;/j)u:/'(/ln:l) :|
= I(Y s X, (5.29)

where we have used the relation

Zﬂ Psa(mln + m)Pi(n +m) = Y Psa(mln)Pi(n)

n=m

= Zﬂ Ps(mln)P5(n) (5.30)

which indicates that Condition 4.3 is fulfilled. Therefore we have shown by
explicit calculation the equality AH(X5u, X5lY &0 = I(Yd: X3) in the
SU(2) process with the photon number measurement.

5.2.2. SU(1, 1) Process

We next consider the SU(1, 1) process with the photon number measure-
ment. From (2.4) and (5.11) we obtain the compound quantum state of the

physical system and the measurement apparatus after the interaction (Ban,
1994, 1997a),

© $1/2(m+n) PRI ~ A
Om — Zﬂ a mf]{l/ZaSaS p}S‘n?{l/ZaS asag ® |7"’IA><7’1A| (531)
m=0 n= \/Wl'l’l'

where we have defined the parameters £ = tanh® 0 and ¥ = 1/ cosh®0
(£+ H = 1). The postmeasurement state f)(s)m(m) of the physical system after
the measurement outcome 7 was obtained and the probability P y(m) of the
measurement outcome m are given respectively by

a n13{1/2a5a5p§1 3{1/2(15(15“21

Pou(m) = - —— (5.32)
p 1( Tr [aA:Em 3{1/2a5a5p§ﬂ{1/2a5a5ag1]
PAum) = Zn I—L" LI et i) (5.33)

Comparing these equations with (5.16) and (5.17), we find the similarity
between the SU(2) and SU(1, 1) processes with the photon number measure-
ment. If we exchange the annihilation (creation) operators with the creation
(annihilation) operators, we obtain the results for the SU(2) [SU(1, 1)] process



2516 Ban

from the SU(1, 1) [SU(2)] process. The matrix element of the unitary operator
AUs4 given by (5.11) is calculated to be

(ma, nslUsalnk, 04) = mAUy (n, n)104) = G (m, n")Sun+m (5.34)
with
G(l’l’l I’I) (H_mL$n1f7{n+l (535)

which yields the relation
TrA Uli(n1, n2) ES(m)Ua(n3, na)pih]
= \/G(m; nl)G("’l, n4)8n2,n1+n18n3,n4+m (536)

Thus we find from this relation that Conditions 3.1 and 4.1-4.3 with
f(n; m) = n — mare fulfilled in the SU(1, 1) process with the photon number
measurement. Therefore the entropy decrease of the physical system is equal
to the amount of information obtained from the measurement outcomes.
Substituting (5.36) into (3.29), we obtain the POVM lIs(m) of the physi-
cal system in the SU(1, 1) process with the photon counting measurement,

[Ts(m) = 3, G o, mlns)(ons (5.37)

which indicates that the conditional probability is given by Psi(mln) =
G (m, n). This result is consistent with (5.33). The operational observable
%?(m) of the physical system defined by the SU(1, 1) process with the photon
number measurement is given by

N (n) = Z m"Tls(m) = agn () (5.38)
m=0 70
with
g\
Gs(&) = | — 95 (5.39)
In particular, we obtain for n = 1 and n = 2,
NP = asa} NPQ) = ( asa} 1 +§7—5§ dsay (5.40)

where the parameter £/% = sinh’0 represents the enhanced vacuum fluctua-
tion caused by the nondegenerate parametric amplifier (Walls and Milburn,
1994). Furthermore, as we have seen in the case of the SU(2) process, the
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decrease of the Shannon entropy becomes equal to that of the von Neumann
entropy if the premeasurement state pm of the physical system is diagonal
with respect to the photon-number eigenstate lns).

Before closing this section, we show by explicit calculation the equality
between the entropy decrease of the physical system and the amount of
information obtained from the measurement outcomes. The amount of infor-
mation obtained from the measurement outcomes is given by (5.26) and the
entropy decrease of the physical system in the measurement process is given
by (5.27). In the case of the SU(1, 1) process, instead of (5.28), we obtain
from (5.32)

Ps (mln — m)Pi(n — m)
Zn o Psa(mln — m) Pi(n — m)

(I’ls|p0u1(l’l’l) |I’ls> =

_ Psa(mln — m)Pi(n — m)
Pgut(m)

Thus we can calculate the entropy decrease AH(Xow, XinlY &) as follows:

©

(5.41)

AH(Xaw, X2lY30) = — S Pi(n) In Pi(n)
2 nzn Ps (mln — m)Pi(n — m)
Psi(mln — m)Pin(n — m)
X In y
Pout(m)

= — Pisn(n) In Pisn(n)

n=

PSAU’I’I|7’I)P]S;1U’I)
P P, In
m=0 nzﬂ SA(’"'”) (n) [ Pgut(m) :|

2 (mln)
- m=0 nzﬂ PSA("”'”)Pm(”) 1 [ ;/;u:/gl n) :|
= I(Yie X35 (5.42)

where we have used the relation

©

> Psa(min)Pi(n) = Y Psa(mln — m)P{(n — m)

n=m

= Zﬂ Ps (mln — m)P3(n — m) (5.43)
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which means that the SU(1, 1) process with the photon number measurement
satisfies Condition 4.3. Therefore we have shown by explicit calculation the
equality AH (Xouw, XlYaw) = I(Y & X3 in the SU(1, 1) process with the
photon number measurement.

6. QUANTUM MEASUREMENT OF A CONTINUOUS
OBSERVABLE

We have investigated the information about an intrinsic observable of
a physical system extracted from the measurement outcomes and the entropy
change of the measured physical system caused by the quantum measurement
processes, where we have assumed that the observables have a discrete
spectrum (discrete observable). In this section, we will consider the informa-
tion gain and the entropy change in quantum measurement processes of
observables which have a continuous spectrum (continuous observables). The
mathematically rigorous treatment of quantum measurement processes of
continuous observables has been formulated by Ozawa (1984). In this section
we will treat them in a physically acceptable way, though the treatment is
not mathematically rigorous.

6.1. Information Gain and Entropy Change

We first reformulate the results obtained in Sections 3 and 4 to consider
the information gain and entropy change in quantum measurement processes
of continuous observables. Suppose that we perform some quantum measure-
ment on a physical system to obtain the information about an observable Js
which is expanded in the following form:

Ts = J dp ps(W)XUs()| = J dp pE3 () (6.1)
pem pem

where Ej3(n) = |\Jl§(p))(\115(p)| is a projection operator onto the eigenspace
of the observable s and Jl represents the spectral set. We assume that the
eigenstate [Js()) of the observable s satisfies the relations,

Ws(u)s(pa)) = 0(pr — pa), J dp Wis(p)XWs(p) = Is (6.2)
pet

The readout of the measurement outcome whose value belongs to an infinitesi-
mal interval [v, v + dV) is described by the POVM E%(V) dv of the measure-
ment apparatus, where the operator E4(V) satisfies

E4(v) =0, J dv E3(v) = I (6.3)
veN
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Here N represents the set of all possible outcomes of the quantum measure-
ment process. If the measurement outcome Vv is obtained by measuring the
value of a continuous pointer observable ¥4 of the measurement apparatus,
the POVM E4(v) dv becomes a projection operator E4(V) dv =
l) 4(V)X O 4(V)|dv, where | 4(V)) is the eigenstate of the pointer observable
% 4. The quantum measurement process of the continuous observable is char-
acterized by the triplet Ml = (f)ﬁl, E4(v), Asy), where f)ﬁl is the initial quantum
state of the measurement apparatus and s, is the unitary operator which
describes the state change caused by the interaction between the physical
system and the measurement apparatus.

When we obtain the value v as the result of the quantum measurement
process, the postmeasurement state f)(s)m(v) of the physical system is given by
the reduction formula (2.6), and the probability density PZ,(Vv) that the mea-
surement outcome V is obtained is given by (2.7), where the normalization
condition is modified to be fvexdv Py (V) = 1. Relations (2.8)—(2.10),
(2.13)—(2.17), and (2.15) are still valid for quantum measurement processes
of continuous observables if the probabilities appearing there are replaced with
the probability densities. Relations (2.11) and (2.14) are modified as follows:

Pgut (H) = J dV Pout (H'V)Pgut(v) (64)
veN

Pou(p) = J dv P, v),  Plu(v) = J dp P, v) (6.5)
veN

vell

As we have done in the quantum measurement process of the discrete observ-
able, we can introduce continuous random variables in the quantum measure-
ment process of the continuous observable. For continuous random variables,
the Shannon entropy is called the differential entropy (Cover and Thomas,
1991). Then we obtain the differential entropies in the quantum measurement
process of the continuous observable,

~

H(X%) = — du P3(p) In Pi(p) (6.6)
Jue
H(Xouw) = — dp Piu(p) In Pou(p) (6.7)
Juelt
HY&) = — dv PA.(v) In Pau(v) (6.8)
J veN
H(Xouta Ygut = - dH dV Pout(“a V) ln Pout(“a V) (69)
Jueit veN
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Furthermore, the conditional entropies are given by

HX5Y &) = J du J dv P3a(n, v) In P3y (ulv) (6.10)
veN

H(Y & X50) = J dpj dv Pk (u, v) In Py (Vip) (6.11)
veN

The relations among the entropies given by (2.24) and (2.25) are valid for
the quantum measurement process of the continuous observable. It should
be noted that the differential entropy can take negative values (Cover and
Thomas, 1991).

The output probability density P& (V) of the measurement apparatus
can be expressed in the following form:

PAu(v) = Trlls(v)ph] (6.12)

where ﬂg(v) dv is the POVM of the physical system and the operator ﬂg(v)
is given by (3.2), and satisfies the relations

[Is(v) = 0, J dv [ls(v) = Is (6.13)
veN

For the quantum measurement process of the continuous observable, we
assume that the POVM IIg(v) dv of the physical system satisfies the relation

UsITTWM () = 3(u — p')Psa(vip) (6.14)

which is equivalent to the condition given by (3.7). In this equation Ps4(VIp)
represents the conditional probability density that the measurement outcome
Vv is obtained when the observable 5(5 of the physical system takes the value
L in the premeasurement state f),sn When this condition is satisfied, the POVM
I15(v) dv of the physical system and the output probability density PZ&(V)
of the measurement apparatus become

mm=J du Wis(1)) Psa(VI)s()| (6.15)
pet

Pou(v) = J dp Psa(VI) Piu(p) (6.16)
pelt

where PH(n) = WUs(p)l pml\Jlg(},L)) is the probability dens1ty that the observ-
able ys takes the value L in the premeasurement state pi, of the physical
system.

According to the Bayes theorem (Caves and Drummond, 1994), we
obtain the joint probability density Ps4(V, W) and the posterior probability
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density Pus(ulv), which are glven respectively by (3.10) and (3.11). The
amount of information I(Y 5w; X) about the observable s of the physical
system extracted from the measurement outcomes is given by (3.12)—(3.15)
in which the summation is replaced with the integration,

H(Y&, X5 = — i dv Ps(v, u) In Psy(v, n) (6.17)
Juet JVeN

HX5Yd) = — du dv Ps(v, n) In Pys(ulv)  (6.18)
Juelt JVeN

H(Y 5ulXin) = — dp dv Psa(v, 1) In Pss(vip)  (6.19)
Jueit JVeN

which satisfy relation (3.16). .
The operational observable S" (n) of the physical system defined by
the quantum measurement process of the continuous observable s is given by

YP(n) = J dv v'IIs(v)
veN

= Tr [ Uku(Ls R Y 4(n))Usa(Ls X FA)i/:l)] (6.20)

where the operator ¥ 4(n) of the measurement apparatus is defined by
Y 4(n) = J av V'EG(v) (6.21)
veN

which becomes the spectral decomposition of the pointer observable if
E4(v) is the projection operator. Using the operational and intrinsic observ-
ables of the physical system, the condition given by (6.14) is expressed as
the commutation relation [Sg?(n), 5(5] = (. Therefore we can obtain the fol-
lowing theorem.

Theorem 6. 1. If the operational observable )A(?(n) defined by the quantum
measurement process M = (f)ﬁl, E4(v), As,) commutes with the intrinsic
observable 5(5 of the physical system, the amount of information
I(Y 44 X3, about the intrinsic observable 5(5 extracted from the measurement
outcomes can be expressed by the Shannon mutual information,

I(Y du; X

= J du J dv Ps,(VIL)P(p) In [M‘AV—'M] (6.22)
pelt veN

Pout(v)
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where the probability densities Ps4(vln) and Pau(Vv) are given by (6.14)
and (6.16).

To investigate the relation between the information gain and the entropy
change in the quantum measurement process of the continuous observable,
let us express the unitary operator AUsy in the following form:

MUsa = J dHJ dp’ Wrs()Ua(p, p)s(p)! (6.23)
pet p'em

Uds = J dluj dp’ Nis(upUl (u, 1) (Us(u)l (6.24)
pet p'em

where the operators U4(p, p') and Ul(p, p') of the measurement apparatus
are given by (3.24) and (3.25). Since the operator Us, is unitary, the operators
Ua(u, ') and Ul(p, p') satisfies the relation

J du” Ua(p, W)Uk, p')
prett

) J dp" Ul wHUAp", 1) = 8w — u)L - (6.25)
nredt
In terms of the operators U4(u, n') and Ufi(p, u'), the condition given by
(6.14) is expressed in the following form.

Condition 6.1. The quantum measurement process which is characterized
by the triplet M = (pi, E4(v), As.) satisfies the relation

J du” Tr L Uf(p, p)ES(vU LR, p)pi]
predt

= 8(1 — u)Psa(vin) (6.26)

To proceed further, we impose the following condition on the quantum
measurement process.

Condition 6.2 The quantum measurement process which is characterized
by the triplet M = (p{, E4(v), As4) should satisfy the relation

Tra U, B ES(v)Ua(p, n")pil
=0(u" — pNo(u' — f(u; V) Psa (VIf(u; v)) (6.27)
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where f(1t; v) € M is a function of p that in general depends on v. If f(p;
V) # W, the conditional probability density Ps4(vIp) and spectral set Ji satisfy
the relation,

J dp Psa(VIf (s VF (f(p; v) = J du Psa(VIW)F (u) (6.28)
pet

pet
where F (L) is any analytic function.

It should be noted that relation (6.27) can be expressed in the same form as
that given by (4.8).

When the quantum measurement process satisfies Condition 6.2, the
joint probability density P5a(W, v) in the compound quantum state of the
physical system and the measurement apparatus after the interaction is greatly
simplified to be

PSR, V) = Psa(VIf (s V)PR(f(Rs V) (6.29)

Using this result, we can calculate the joint entropy of the physical system
and the measurement apparatus as follows:
H(Xouw, Y gu

r r

= - dp dv Pou(p, v) In Poa(u, v)

Juett JveN
== du dv Psa(VIf (s V)P (f(Rs V)
pelt veN

J

X In [Psa(VIf(; V)PRF(; V)]

~

=—| du dv Pss(VI) Pin(p) In[ Pss(VI) Pin(p)]

pelt JVeN

J

= H(X) — J i J av Psa(VIL)Piu(p) In Psa(vip)
veN

= H(XS) + H(YA) — J @J w&mumm[ﬁ%%]
veN out

= H(X) + HY &) — 1Y & X5

where we have used (6.16) and (6.28). When we obtain the measurement
outcome, the decrease of the entropy of the physical system,
AH (X5, XilY3y), is calculated from (4.2). Therefore we can obtain the
following theorem.
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Theorem 6.2. When the quantum measurement process of the continuous
observable M = (f)ﬁl, E4(v), Us4) satisfies Condition 6.2, the entropy
decrease of the physical system is equal to the amount of information that
can be extracted from the measurement outcomes,

I(YOUU X ) = AH(Xout, §n| Ygut) (631)

In this case, the equality of the conditional entropies H(XHlY4) =
H(X5.:Y &) also holds, which indicates that the uncertainty of the observable
Xs in the premeasurement state is equal to that in the postmeasurement state
when the measurement outcome is obtained.

It should be noted that Condition 6.2 is sufficient, but not necessary,
for this theorem to be established.

6.2. Position and Momentum Measurements

We now consider the quantum measurement process of the canonical
position observable of a physical system in one-dimensional space to examine
the general results obtained above. Let xs be the canonical position operator
of the measured physical system and let |xs) be the position eigenstate such
that xslxs) = xlxs). Then we have the projection operator E(x) = lxs)(xs| and
the spectral set Ml = R, where R stands for the set of all real numbers. The
quantum measurement process M = (f)ﬁl, E4(v), Usy) of the position observ-
able of the physical system is set up in the following way.

1. The measurement apparatus of the posmon measurement is prepared
in an arbitrary quantum state pm before the interaction with the
physical system. The measurement accuracy of position, of course,
depends on this quantum state.

2. The readout of the measurement outcome is performed by measuring
the pointer observable, which is the position operator x, of the
measurement apparatus. Thus we have the projection operator
E4(x) = Ixa)x4l and the spectral set N = R, where |x,) is the
position eigenstate of the measurement apparatus, such that
)€A|x,4> = x|xA).

3. The unitary operator A, that describes the state change caused by
the interaction between the physical system and the measurement
apparatus is given by

@ELSA = eXp(—l')EspAA) (6.32)
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where p4 is the momentum operator of the measurement apparatus
that is canonical conjugate to the position operator x4. In this equa-
tion, we set & = 1 and gt = 1, for the sake of simplicity, where
the parameter g stands for the coupling constant.

In this measurement process, the compound quantum state of the physical
system and the measurement apparatus after the interaction becomes

Pout = J de dx’' J dy Jw dy" Ceslphlx 5)alpily )
X Ixs)(csl Rlxa + pay x4 + pil (6.33)

where we have used the relation exp(—lapA)le) x4 + aa).

The postmeasurement state pom(r) of the physical system after the mea-
surement outcome r was obtained and the probability density P au(r) of the
measurement outcome r are given respectively by

. S i — ulpialra —
p(s)m(r)zj de dy|x5>[<xsp T m] sl (6.34)

Pgut(r)

Pou(r) = J dx (xsIpiulxs)(ra — xalpiblra — xa) (6.35)

Since we have the initial probability density P3(x) = (xglf)isnlxg) of the physical
system, we find from (6.35) that the conditional probability density
Ps4(rlx) becomes

Poa(rlx) = (ra — xalpitlra — x.) (6.36)

which gives the relation

Pou(r) = Jw dx Psa(rlx)P3(x) (6.37)

—o0

Furthermore, the operators U4(x, y) = (xslUsalys) and Uli(x, ») = (eslUalys)
of the measurement apparatus satisfy the relation

Tr Ul(xx ) EXr) U, x")pis]
= 3(x — X)W — X")(ra — x"ulpiblra — x4 (6.38)

It is easy to see from this relation that Conditions 6.1 and 6.2 with f(x; y)
= x are fulfilled. Therefore Theorems 6.1 and 6.2 are established in the
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position measurement of the physical system. Furthermore the POVM ﬂs(l’)
of the physical system is given by

[s(r) = J dx 1xs)Psa(rlx)(xs] (6.39)

—0

from which the operational observable 5@" (n) of the physical system defined
by the position measurement is calculated to be

YP(n) = J dx (¥s + x)"Cealpilx) (6.40)

—o0

It is obvious that this operational observable commutes with the intrinsic
observable xs of the physical system.

Since Theorem 6.2 holds in the position measurement of the physical
system, we have the equality (Y& Xi) = AH(Xaw, XilY 2. Here we
show this equality by explicit calculation of the entropy decrease
AH (X3, X3lY o) of the physical system. This is an easy task when we
use the following expression of the joint probability density P3u(x, y) in
the compound quantum state f)(s)ft after the interaction between the physical
system and the measurement apparatus:

Pk ») = Trsa[(Ixs)xsl & 1yap(ra)psi]
= Qa4 — XA|pin|yA - XA><Xs|pin|xS>
= Psa(yIx)Piu(x) (6.41)

which is equivalent to (6.29) with p = x, v = y, and f(x, y) = x. Then we
can calculate the joint entropy H (X S6 Y (’)’m) as follows:

H(X5u, You)

_ r dx r dy Ps iyl P In[Psa( yx) P01

= H(X$) — J de dy Pss(yIx)P3(x) In Psy(ylx)

Pou(y)

= H(X ) + H(Yout) I(Yout; Xin (642)

= HX) + HY &) — J de dy Ps(ylx)P3(x) ln[w]

where we have used (6.22) and (6.37). Thus we have found from (4.2)
that the entropy decrease of the physical system is equal to the amount
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of information extracted from the measurement outcomes, I(Y &g X5) =
AH (X3, X3l o).

Finally let us rewrite the amount of information about the position
observable x5 obtained from the measurement outcomes in another form.
Using (6.22), (6.36), and (6.37), we can calculate I(Y & X5) as follows:

I(Ygut; X}S‘n

= J“’ dx J“’ dy Ps(xly)Pin(y) ln[w]

P Gu(x)
= H(Y o) + r dx r dy (ea — yalpilxs — yOPH(Y)
X In{xs — yalpitlxs — pa)
= H(Y3u) + r dx r dy CealpiileayP () InGealpiilxy (6.43)

= H(Y%) — HY?)

where H(Y{) is the differential entropy of the measurement apparatus in the
initial quantum state p,

HY{) = —J dx Cealpihlx.s) InGelpilxs) (6.44)

This result indicates that the amount of information about the position observ-
able xs obtained from the measurement outcomes is equal to the entropy
increase of the measurement apparatus in the quantum measurement process.

We have investigated the quantum measurement process of the canonical
position observable xs of the physical system. The same results are also
obtained for the quantum measurement process of the canonical momentum
observable of the physical system. In the momentum measurement, the intrin-
sic observable of the physical system and the pointer observable of the
measurement apparatus are canonical momentum operators,

A

Xs =ps,  Ya=pa (6.45)

The unitary operator s, that describes the state change caused by the
interaction between the physical system and the measurement apparatus is
given by

MUss = exp(—ipsx4) (6.46)

In this case, since the quantum measurement process of the momentum
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observable satisfies Conditions 6.1 and 6.2, we obtain Theorems 6.1 and
6.2. Therefore the amount of information about the momentum observable
ps of the physical system extracted from the measurement outcomes is
equal to the entropy decrease of the physical system, I(Y o X5) =
AH(X5, XilY 2y, and to the entropy increase of the measurement apparatus

in the quantum measurement process, (Y& Xi) = H(Y &) — H(Y{).

7. CONTINUOUS MEASUREMENTS

We have considered the amount of information extracted from the mea-
surement outcomes and the entropy change of the physical system in the
quantum measurement processes of discrete and continuous observables. The
quantum measurement processes in Sections 5 and 6 have used the projection
operators to obtain the results of the quantum measurement process, though
the general results obtained in Sections 3, 4, and 6 are valid for using any
POVM to obtain the measurement outcomes. Therefore we will consider a
quantum measurement process in which the readout of the measurement
outcomes cannot be described by any projection operator, or equivalently in
which the pointer observable of the measurement apparatus cannot be defined.
In this section we use the photon counting measurement (continuous quantum
measurement of photon number), which obeys the quantum Markov process
(Srinivas and Davies, 1981; Srinivas, 1996, Chmara, 1987; Ban, 1997b), to
obtain the photon number of the measurement apparatus. As an example, we
consider the degenerate four-wave mixing process (Ban, 1996b) with the
photon counting measurement, which corresponds to the continuous quantum
nondemolition measurement of the photon number of the physical system
(Braginsky and Khalili, 1992).

7.1. Photon Counting Measurement

The photon counting measurement, which obeys the quantum Markov
process, consists of two basic processes, a one-count process and a no-count
process (Srinivas and Davies, 1981; Srinivas, 1996, Chmara, 1987; Ban,
1997b). Let f)(s)fﬁ be the compound quantum state of the physical system and
the measurement apparatus after the interaction between them. Then we
perform the photon counting measurement on the measurement apparatus to
obtain the value of the photon number operator 174 = ala.. The one-count
process represents the state change which occurs when the photodetector
registers one photon of the measurement apparatus. This process is described
by the superoperator J 4 of the measurement apparatus. The state change
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caused by the one-count process and the probability that the one-count process
occurs in an infinitesimal time interval dt are given respectively by
"4

gA EOut

TrSA[gAfSSA]’ P(1; dty = TrgA[ﬁAf)(S)ft] dt (7.1)
out

p?;ft d
The no-count process represents the time evolution of the quantum state during
which the photodetector does not register any photon of the measurement
apparatus. The time evolution of the quantum state in the no-count process
and the probability that the no-count process continues during time ¢ are
given respectively by

~ s exp( ZQA)FA)cs)ﬂlt
out TI'SA[ eXp(l-gA)pout]

P(0; 1) = Trsa[exp(t2.)p3a]  (7.2)

where the generator &4 is the superoperator of the measurement apparatus.
In this equation, we have ignored the time evolution of the system that is
independent of the photon counting measurement, for the sake of simplicity.

It is assumed in the photon counting process that the photodetector
cannot register more than one photon in an infinitesimal time interval dz. In
this case, the normalization condition of the photon counting probability is
given by P (0; dt) + P(1; dt) = 1, which yields the relation between the
superoperators J 4 and &4,

TI'SA[(JA + gA)pout] = (73)

This relation is used to determine the superoperators J 4 and &,. Using the
superoperators J 4 and ¥4, we can describe the m-count process that the
photodetector registers m photons of the measurement apparatus during time
t. The superoperator Ni(#) of the m-count process is given by

t tm h
Ny = | dtn dtm—1 -+ dn
0 0 0

X SAA(Z — 1) gASA (tm — tm—1) Ty SAA (t, — 1) gASA(Z1) (7.4)

where we have defined the superoperator S4(f) = exp(t%.). In this equation
the integrand represents the process that the photodetector registers one photon
at each of the times #, t, ..., #, and does not register any photon in the
rest of the time interval (0, ). The compound quantum state f)(s)ft(m) of the
physical system and the measurement apparatus after the m-count process
and the probability P au(m) that the m-count process occurs are given respec-
tively by

N m 5 out

TrsANi()po] Pu(m) = Trsa Nii(t) poit] (7.5)

pout(m) =
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where the probability Pgu(m) is normalized as

z Péw (m) = Trsa [e" 747 70) 5o = 1
m=0
which is ensured by (7.3).

To investigate the photon counting measurement, we have to determine
the superoperators J 4 and & 4 explicitly. For this purpose, we assume here
that when the photodetector registers one photon of the measurement appara-
tus, the photon disappears from the measurement apparatus (Srinivas and
Davies, 1981; Srinivas, 1996). Under this assumption, the superoperator I
of the one-count process is given by

T PS5k = hapsial (7.6)
where the parameter A represents the strength of the interaction between the
photon of the measurement apparatus and the photodetector. Of course, we
can use a different superoperator to describe the one-count process such as
T ok = Nl pSdd s or T pSk = Nald s pSialias. The former represents the
photon counting measurement with Mandel’s quantum counter (Mandel,
1966; Ueda and Kitagawa, 1992) and the latter represents the continuous
quantum nondemolition measurement of the photon number (Ueda et al.,
1992). Even if we use these superoperators, we can obtain the results in the
same way. Using relation (7.3) and the fact that S A(l)pom should be a Hermitian
operator, we obtain the superoperator ¥4 from (7.6),

1 R
gApout = _E k(aALaApout poutaAaA) (77)

Thus the compound quantum state pom(m) after the m-count process and the
photon-counting probability P &(m) become

exp( —thidha )aipshail" exp(—L hidhd 1)

TI‘SA[CIA exp( )\«laAaA)aA pout]

pok(m; y) = (7.8)

Pou(m; y) = " Y Trsaal" exp (—Yahds)dipo]

_ —n (1 — A m(l’lA|TrS[pout]|nA> (7.9)

W“=n ml(n — m)!

where the parameter y is called the effective quantum efficiency of the
photodetector (Srinivas and Davies, 1981; Srinivas, 1996),

Y =1 — exp(—\0) (7.10)

In equations (7.8) and (7.9), we have written the quantum state and the
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probability as f)ﬁft(m; Y) and P au(m; V) to emphasize that they are obtained

by the photon counting process with the photodetector of effective quantum
efficiency Y.
Let us now introduce an operator £4(m; v) of the measurement apparatus,

©

- ! _
Ed(my) = (1 = ) e
W= ml(n — m)!
— o n—' m n—m pA
= YH( = )" Ea(n) (7.11)

Whoml(n — m)!

where E4(n) = InsXn4l. This operator satisfies the relations

Ey(m; ) = 0, Y Eb(m; y) = I (7.12)

m=0
Thus the operator E4(m; Y) is nothing but the POVM of the measurement
apparatus. Using the POVM E4(m; y), we can express the probability
P&«(m; v) of the measurement outcome m in the photon counting process,

Pau(m; ¥) = Trsal(Is X Ed(m; v))psi] (7.13)

The postmeasurement state f)(s)ut(m; Y) of the physical system after the mea-
surement outcome m was obtained is derived from (7.8),

Tr [ (Is X Egj(m; 'Y))bgft]
Trsal(Is ® Ed(m; v))pou]

It is important to note that equations (7.13) and (7.14) are the same as
Egs. (2.7) and (2.6). Therefore the general results obtained in Sections 3
and 4 hold when we perform the photon counting measurement to obtain
the photon number of the measurement apparatus. The POVM of the
measurement apparatus for the photon counting measurement is given by
(7.11) and it is not a projection operator. It should be noted that if the
effective quantum efficiency Y is unity, the POVM E4(m; Y) becomes the
projection operator onto the eigenspace of the photon number operator

dlyay, that is, limy_ Eg(m; v) = Eg(m) = lma)myl.

Powl(m; ¥) = Trapia(m; ¥)] = (7.14)

7.2. Degenerate Four-Wave Mixing Process

We now consider the degenerate four-wave mixing process with the photon
counting measurement to examine the results obtained above. Suppose that we
obtain information about the photon number of the physical system by means of
this quantum measurement process. In this case we have the intrinsic observable
5(5 = alas, the spectral set M = {0, 1, 2, ..., %}, and the projection operator
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E(n) = Ins)nsl. The quantum measurement process which is characterized by
the triplet M = (pih, E4(V), As4) is set up in the following way.

1. The measurement apparatus is prepared in the vacuum state f)ﬁl =
104)(0 4] before the interaction with the physical system.

2. The photon number of the measurement apparatus is obtained by
means of the photon counting measurement, which obeys the quan-
tum Markov process. The readout of the photon number is described
by the POVM E4(m; V) [see (7.11)], and we have N = {0, 1, 2,

o0
s, Oh

3. The unitary operator Als, that describes the state change caused by
the interaction between the physical system and the measurement
apparatus is given by

WUsy = exp[ —ig"abas (a4 + ay)] (7.15)

where the parameter g represents the coupling constant of the degen-
erate four-wave mixing process (Milburn and Walls, 1984; Ban,
1996b).

In the degenerate four-wave mixing process, the compound quantum
state of the physical system and the measurement apparatus after the interac-
tion becomes

54
pout - Z{)
m=0 n= \/

X exp(—7 gn3) ® lm4)n 4l (7.16)

12

exp( —5 gn3)(g "ns)" piu(g "ns)"

where ns = abas is the photon number operator of the physical system.
Substituting (7.11) and (7.16) into (7.13) and (7.14), we obtain the
postmeasurement state pom(m Y) of the physical system after we obtained
the measurement outcome m and the probability P &.(m; ¥) of the measure-
ment outcome m,
55 (m) = 2 ——}gﬁé)ﬂﬁpﬁlnie?g S——lfgnﬁ)hm;y) .17
(Trs[exp(—gns)ns"pinl)im:y)

(m;y)

Plalm: 1) = <1 ¢"Trsfexp(— gt i bm]> (7.18)

where (F(n))n:y) represents the average value of F(n) by means of the bino-
mial distribution obtained in the photon counting measurement,

* !
FEmmn = 3, m Y"(1 — )" "F(n) (7.19)
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The operators Uqa(n, n') and Ul(n, n') of the measurement apparatus, which
are given by (3.24) and (3.25), satisfy the relation

Tra[Uli(n1, n2) Ef(m; ¥)Ua(n3, na)pii]

©

|
= Sy S T y"(1 — ¥ " JH(n, m)) H(n, n3)  (7.20)
n—m I’I’l!(l’l - I’I’l)!

where H(m, n) is given by
1 m
H(m, n) =~7 (gn)" exp(—gn®) (7.21)

It is easy to see from equation (7.20) that the degenerate four-wave mixing
process with the photon counting measurement satisfies Conditions 3.1
and 4.1-4.3 with f(n; m) = n. Therefore it is found from Theorem 4.1
that the amount of information about the photon number of the physical
system extracted from the measurement outcomes is equal to the entropy
decrease of the physical system in the quantum measurement process, that
is, I(Yde X5) = AH(Xow, XY &y). If the premeasurement state pjy of
the physical system is dlagonal with respect to the photon-number eigenstate
lnsy, the postmeasurement state f)(s)ut(m; Y) becomes diagonal. In this case
the decrease of the Shannon entropy is equal to that of the von Neumann
entropy, AH(Xouw, XinlY3u) = AS(Xow, XilY4u) (see Theorem 4.2).

The POVM Hs(m, Y) of the physical system in the degenerate four-
wave mixing process with the photon counting measurement is obtained from
(3.29) and (7.20)

[Ism; y) = zﬂ m,(k_ it —ar 1= VT HC ) s (7.22)

The conditional probability Ps4(mln; ) that the measurement outcome is m
when the photon number observable takes the value # in the premeasurement
state of the physical system becomes

Ps,4(l’l’l|l’l; 'Y) = (I’ls|ﬂs(m; 'Y)|I’ls>
- k!

= —_— M1 — Nm
= L 2\m )
— L yany exp (— 1) s

which satisfies the relation

Pow(ms; v) = Zﬂ Psa(mln; y) Pi(n) (7.24)
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where P(n) = (nslphilns) and P3u(m; y) is given by equation (7.18). Further-
more, using the POVM Ils(m; y), we obtain the operational observable
N§(n; v) of the physical system defined by the quantum measurement process,

o0 ~ an
NP(n; vy = Y m"s(m; v) = oen (& v) (7.25)
m=0 & £=0
with
B(E: ) = explgy(e® — Dn3] (7.26)

In particular we obtain for » = 1 and n = 2
NP y) = gyns, NP2 v) = gyns (gyns + 1) (7.27)

These results indicate that the operational observable of the physical system
decreases by a factor ¥ times that obtained in the ideal photon number measure-
ment, which is described by the projection operator E4(n) = lniXnal.

Finally we explicitly calculate the entropy decrease of the physical system
to check the equality /(Y Ao X3 = AH(X S Xy out)- When we use the relation

Ps(mln; y) P(n)
P/:)ut(m; Y)

(nslpSu (m; y)lns) = (7.28)

we can calculate the entropy decrease AHy(Xaw, XlYauw) as follows:
AH(Xout, X§1|Ygut)
= H(X%) — H(X5ulY 30

©

— ¥ Pi(n) InPS u(n) + Zﬂ > Pau(m; y)

n=

X <n5|b§ut (m; 7)ns) ln(nglp(s)m (m; V) lns)

=-3 Pi(n) In Piy(n) + Z::o ZOPSA(MM; ) Pin(n)

% In PSA(m/';n; V)P i(n)
Pout(m; Y)

_ * * s,4!7’l’l|l’l' {)
P MZQ Ps(mln; v)Pin(n) ln[ P 1) :|

I(Y G X (7.29)
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This result explicitly shows the validity of Theorem 4.1.

8. SUMMARY

In this paper we have investigated the amount of information about the
intrinsic observable of a physical system that can be extracted from the
results of the quantum measurement process and we have also considered
the decrease of the Shannon entropy of a measured physical system caused
by the quantum measurement process. When the operational observable of
the physical system defined by the quantum measurement process commutes
with the intrinsic observable of the physical system, the amount of information
about the intrinsic observable can be expressed by the mutual information
between the physical system and the measurement apparatus. If the quantum
measurement process which is characterized by the triplet M =
(f)ﬁl, E% (v), WUs.,4) satisfies Conditions 4.1-4.3 or Conditions 6.1 and 6.2, the
entropy decrease of the physical system caused by the quantum measurement
process becomes equal to the information gain. Furthermore, it has been
shown in the quantum measurement processes of discrete observables that
if the statistical operator of the postmeasurement state (the premeasurement
state) of the physical system commutes with the intrinsic observable of the
physical system, the decrease of the Shannon entropy is no less (no greater)
than that of the von Neumann entropy in the quantum measurement process.
The main results obtained in this paper are summarized in Theorems 3.1,
4.1, 4.2, 6.1, and 6.2.

We have considered several examples of quantum measurement pro-
cesses to examine the general results. The normal unitary process which
satisfies the probability reproducibility condition and the SU(2) and SU(1,
1) processes with the photon number measurement in quantum optical systems
have been considered as examples that satisfy Conditions 4.1-4.3. Further-
more, the position and momentum measurements of a physical system have
been considered to show that the general results are still valid for quantum
measurement processes of continuous observables. In these quantum measure-
ment processes, the readout of the measurement outcomes is performed by
measuring the pointer observable of the measurement apparatus, which has
a discrete or continuous spectrum. The general results obtained in this paper,
however, are established in quantum measurement processes where the pointer
observable of the measurement apparatus cannot be defined. To show this
explicitly, we have considered the quantum measurement process in which
the readout of the measurement outcome is performed by the photon counting
measurement (the continuous measurement of photon number), which obeys
the quantum Markov process. As an example, we have investigated the
degenerate four-wave mixing process with the photon counting measurement,
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which is equivalent to the continuous quantum nondemolition measurement
of the photon number of a physical system. Therefore we have found that
the general results obtained in this paper are valid for many kinds of quantum
measurement processes
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